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Abstract

This document provides accessory material to the submitted version of the paper Excess Returns,

Average Returns, and the Adjustment Mechanism of the External Position of a Country.

The main purpose of this document is to provide some accessory material to the published version of

the paper Excess Returns, Average Returns, and the Adjustment Mechanism of the External Position of

a Country as prepared for journal submission. I first provide a full description of the theoretical model

that generates the simulated data used in the VAR section of the paper and some more details about the

approximation of the external constraint. I then present some additional results for the empirical VAR

analysis, especially an extended discussion of the analysis with simulated data. Finally, I provide some

sensitivity analysis and robustness checks of the VAR estimation.

1 Theoretical Model

This Appendix provides a more exhaustive description of the theoretical model used to generate the simulated

data for the VAR analysis in Section 4.3. The model is very similar in spirit to that used by Tille and van

Wincoop (2010) too. I consider a model with two large countries, Home and Foreign (Hand F ), which

are assumed to have similar, but not necessarily equivalent, sizes in steady state. The two countries have

access to two international securities in order to hedge against aggregate country idiosyncratic shocks. One

innovation is a productivity shock, the other is a shock to preferences affecting the intertemporal subjective
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discount factor. As a consequence, incomplete international financial markets are assumed. Given market

incompleteness, an endogenous intertemporal discount factor that responds in a negative way to the aggregate

consumption level is used in order to ensure the existence of a well defined steady state distribution of net

wealth, and the other variables of the model.

The shocks to productivity introduce a differential in the rate of growth of productivity across regions;

the shocks to preferences can be used to represent shifts in demand due, for instance, to aging of population.

These are generally believed to be the causes of the currently observed international imbalances. Each

country produces a single tradable good, which can be either consumed or exported to the other country.

I assume that the consumer has some degree of home bias in consumption. Agents set asset holdings for

the current period based on the expected correlation of their returns with the endogenous consumption-based

kernel. Production is exogenous and each country receives a stochastic endowment of the domestic good in

each period. The two internationally traded assets represent claims on the output of each country. Prices

are flexible and the law of one price holds. However, the home bias allows the real exchange rate to differ

from parity. Under these assumptions, the dynamics of prices is fully summarized by the term of trade.

1.1 Output

I will focus on the home country H, the foreign country is assumed to have symmetric characteristics if not

otherwise specified.

Production factors are assumed to be inelastically supplied by the representative household; they are

constant and normalized to 1. Domestic good output, Yt, follows a deterministic trend starting from an

initial value Y0, and it grows at a constant (log) gross growth rate g. This is an endowment economy and

the amount of output available in each period is determined by a stochastic technological level, eεt , in which

εtfollows an autoregressive process. Equation (1) illustrates how the level of output evolves

Yt = Y0e
gt+εt (1)

The technological level process is regulated by the autoregressive parameter ρε, so εt = ρεεt−1 + et, where

et is an i.i.d. productivity shock. The deterministic trend component of output is defined by Ȳt = Y0e
gt

and output can be simply re-written as Yt = Ȳte
εt . Finally, the foreign good output is similarly expressed

as Y ∗t = Ȳ ∗t e
ε∗t , where Ȳ ∗t = Y ∗0 e

g∗t and ε∗t = ρ∗εε
∗
t−1 + e∗t and a superscript star indicates foreign variables.

I assume that the two countries are symmetric except for the initial values of output, which are allowed to

differ if necessary. This is a condition required to have non-zero steady state net debt positions, as discussed

below. Hence, we can assume that g = g∗ and ρε = ρ∗ε.
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Let PH,t be the price of the H good in the H market and P ∗H,t the corresponding price in the foreign F

market expressed in the foreign currency; the equivalent prices for the F good are PF,t and P ∗F,t. Perfect

exchange rate pass through is assumed; this implies that the law of one price (LOP) for the traded goods

holds. Defining St, the nominal exchange rate between the two countries, as the price of currency F in terms

of currency H, so that an increase of S is a depreciation of currency H, LOP implies PH,t = StP
∗
H,t and

PF,t = StP
∗
F,t. Good H can be consumed either at home or abroad; consumers can use the international

financial assets to finance imports and enhance consumption if wanted and feasible.

The ratio PH,t
Pt
, where Pt is the domestic price index defined below, is endogenously determined in

equilibrium at time t in order to guarantee that international markets clear and the general equilibrium of

the model. Given the definition of Pt in (4), the ratio
PH,t
Pt

can be rewritten as

PH,t
Pt

=
1[

λ+ (1− λ)τ1−θ
t

] 1
1−θ

(2)

where the term of trade τ t is defined as

τ t =
PF,t
PH,t

=
P ∗F,t
P ∗H,t

(3)

1.2 Consumption

The representative household consumes a composite good Ct defined by a CES function over the home and

foreign good. All goods are tradable, but not perfect substitute, and the elasticity of substitution is given

by the parameter φ

Ct =
[
λ
1
φ (CH,t)

φ−1
φ + (1− λ)

1
φ (CF,t)

φ−1
φ

] φ
φ−1

where λ ∈ ( 1
2 , 1) represents the home bias in consumption (assumed exogenously given). CH,t and CF,t are

the H consumer’s consumption of the good produced in the H country and of the good produced in the F

country respectively. The corresponding for the F consumer is

C∗t =
[
(1− λ)

1
φ (C∗H,t)

φ−1
φ + λ

1
φ (C∗F,t)

φ−1
φ

] φ
φ−1

The assumption about the home bias introduces an asymmetry in the definition of the consumption

bundle that makes the CPIs of the two countries differ, even though the law of price holds. Those price
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indices Pt and P ∗t are

Pt =
[
λP 1−φ

H,t + (1− λ)P 1−φ
F,t

] 1
1−φ

(4)

P ∗t =
[
(1− λ)(P ∗H,t)

1−φ + λ(P ∗F,t)
1−φ] 1

1−φ (5)

The PPP (purchasing power parity) does not hold and the real exchange rate γt does not necessarily

have to be equal to 1

γt =
StP

∗
t

Pt
(6)

γt is defined as the price of the F good in terms of theH good; a decrease of γt corresponds to an appreciation

of the H good/H RER (F good is becoming cheaper), while an increase of γt corresponds to a depreciation.

From (6), it is easy to see how the real exchange rate γt is related to the term of trades τ t by the equation

γt =

[
(1− λ) + λτ1−θ

t

] 1
1−θ[

λ+ (1− λ)τ1−θ
t

] 1
1−θ

(7)

The last elements coming from the intraperiod cost minimization problem of the consumer are the relative

demand of H and F goods (here reported for the H consumer)

CH,t = λ

(
PH,t
Pt

)−φ
Ct (8)

CF,t = (1− λ)

(
PF,t
Pt

)−φ
Ct (9)

CF,t and C∗H,t are respectively the imports and exports of country H. For the F consumer the demand

functions are symmetric: C∗H,t = (1− λ)
(
P∗H,t
P∗t

)−φ
C∗t and C

∗
F,t = λ

(
P∗F,t
P∗t

)−φ
C∗t .

The representative household maximizes a time separable utility function defined over consumption. The

lifetime utility is

Et
∞∑
i=0

θitU (Ct+i)

where Et is the expectation operator. The subjective intertemporal discount factor follows an Uzawa-type

specification; θt endogenously responds to the level of consumption to ensure a stationary steady state

distribution of wealth, since with incomplete markets the endogenous variables, in particular the wealth

process, would be non stationary making any approximation method potentially imprecise. Formally θt is
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recursively defined starting from the uniperiodal time varying discount factor βt as

θt = βtθt−1 (10)

and βt is assumed to be a decreasing function of the aggregate consumption in the previous period, taken as

exogenously given by the consumer at the moment of his time t decision. I assume the following functional

form for βt

log
βt
βss

= ρβ log
βt−1

βss
+ ψ log

ct−1

css
+ ut (11)

where ut is an i.i.d. demand shock and ct is consumption normalized by output trend, while βss and css are

the steady state values of these two variables define below. The parameter ψ should be positive, but small

in order to ensure the desired inverse relation between β and consumption, while still allowing for a smooth

transition of wealth around the steady state. An equivalent form is assumed for β∗, which shares the same

parameters and steady state value as β.

1.3 Asset Structure and Budget Constraint

Savings is allocated over two internationally traded securities that represent claims on domestic output, and

can obviously generate capital gains and losses as their prices change over time. The payoffs depend on the

realization of the shocks of the model. The total supply of each type of security is standardized to 1; each

domestic agent owns the whole claim to domestic output and chooses the share of it to retain.

Let VL,t be the share of the H-security that consumer H chooses to hold from the beginning of period t

to the beginning of t+1; VA,t is the H consumer’s share of the F security. The analogous for the F consumer

would be V ∗L,t and V
∗
A,t. Here, A and L refer to the notation for foreign assets and domestic liabilities (from

the point of view of the H consumer) used in the paper.

The budget constraint of the consumer in real terms is

(ZL,t + Yt)VL,t−1 + γt(Z
∗
A,t + Y ∗t )VA,t−1 = ZL,tVL,t + γtZ

∗
A,tVA,t + Ct (12)

where ZL,t and Z∗A,t are the prices of one share of the H and F indices expressed in local currencies and,

again, γt is the nominal exchange rate. Subtracting (ZL,t + Yt) on both sides of the equation and after

re-adjusting a couple of terms, the constraint is equivalently expressed as

−(ZL,t + Yt) (1− VL,t−1) + γt(Z
∗
A,t + Y ∗t )VA,t−1 = −ZL,t (1− VL,t) + γtZ

∗
A,tVA,t + Ct − Yt

5



We can use now the definitions of assets At = γtZ
∗
A,tVA,t and liabilities Lt = ZL,t (1− VL,t) holdings of the

H country and the expressions for the gross real asset returns RL,t and RA,t

RAt =
γt
γt−1

(
Z∗A,t + Y ∗t
Z∗A,t−1

)

RLt =
ZL,t + Yt
ZL,t−1

to finally rewrite the budget constraint in the same form as equation (1) in the main paper

Lt −At = RLt Lt−1 −RAt At−1 − (Yt − Ct) (13)

where, in this economy with no government spending and investment, we also have the trade surplus Dt =

Yt − Ct. A symmetric constraint is then implied by the marketing clearing conditions of assets and traded

goods for the F country as well.

An alternative and convenient form to re-write constraint (13) in order to highlight excess and average

returns is

Bt = RMt Bt−1 −RXt BMt−1 −Dt

which also allows us to apply the solution strategy of Devereux and Sutherland (2011) for this type of model,

where the steady state values of asset holdings are not necessary to find the dynamics of net debt up to a

first order accuracy.

1.4 Equilibrium Conditions, Market Clearing, and Normalization of the Model

I assume a CRRA utility function with relative risk aversion parameter σ. The first order conditions of the

consumption maximization problem are easily derived for the H country

Et
[
Λt,t+1R

A
t+1

]
= 1 (14)

Et
[
Λt,t+1R

L
t+1

]
= 1 (15)

where Λt,t+1 is the consumption based stochastic discount factor defined as Λt,t+1 = βt

(
Ct
Ct+1

)−σ
. Condition

(14) and (15) can be combined to obtain the optimality condition in terms of the excess returns RXt

Et
[
Λt,t+1

(
RAt+1 −RLt+1

)]
= Et

[
Λt,t+1R

X
t+1

]
= 0 (16)
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A first order linearization of this condition shows that the first order component of the excess returns is zero

in expectation and RX can be treated as an i.i.d. term in the solution (see Devereux and Sutherland, 2011).

A similar set of conditions hold for the F country, with the real exchange rate γt appearing in the portfolio

conditions now and Λ∗t,t+1 = β∗t

(
C∗t
C∗t+1

)−σ
1

Et

[
Λ∗t,t+1

(
γt
γt+1

)−σ
RAt+1

]
= 1

Et

[
Λ∗t,t+1

(
γt
γt+1

)−σ
RLt+1

]
= 1

Market clearing conditions on the goods markets simply imply

Yt = CH,t + C∗H,t =

(
PH,t
Pt

)−σ [
λCt + (1− λ) γφt C

∗
t

]
Y ∗t = CF,t + C∗F,t =

(
PF,t
Pt

)−σ [
(1− λ)Ct + λγφt C

∗
t

]

where use have been done of the LOP condition, the definition in (6), and the optimal relative demand

functions (8) and (9). On the assets market, with two countries, positions are opposite to each other; in

particular, the external debt of the F country is defined as

Bt = −B∗t

The deterministic trend of output makes the variables of the model growing over time. In order to solve

the model with the standard linearization techniques, it is necessary to transform the variables in order to

satisfy the balanced growth path requirement and have a well-defined steady state around which conduct

the approximation of the model. The model is then normalized by dividing the variables by Ȳt; lower case

notation will indicate the standardized variables such that xt = Xt
Ȳt
. The modified portfolio conditions are

Et

[
βt

(
ct
ct+1

)−σ
Rat+1e

(1−σ)g

]
= 1

Et

[
βt

(
c∗t
c∗t+1

)−σ (
γt
γt+1

)−σ
Rat+1e

(1−σ)g

]
= 1

where the definition of Λ, Rat+1 =
RAt+1
eg , and the assumption that g = g∗ have been used. Equivalent

1 It is also important to remember that γt
γt+1

is just a function of the term of trade.
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expressions apply for the liability portfolio conditions and Rlt+1. The market clearing conditions are

yt =

(
PH,t
Pt

)−σ [
λct + (1− λ) γφt c

∗
t

]
Y ∗0
Y0
y∗t =

(
PF,t
Pt

)−σ [
(1− λ) ct + λγφt c

∗
t

]

where it is worth noticing that yt = eεt and y∗t = eε
∗
t and the initial values of output in the two countries

are allowed to be different. Finally, the budget constraint becomes

bt = Rmt bt−1 −Rxt bmt−1 − (yt − ct) (17)

where the definitions of Rm and Rx follow from those of the two return rates.

1.5 Steady State

All relative prices are assumed to be 1 in steady state. This implies γss = τss = 1 and the PPP holds. I use

the subscript ss to indicate the steady state value of a variable. As a consequence, the relative demands of

subvarieties H and F are

cH,ss = λcss

cF,ss = (1− λ) css

with the symmetric relations for c∗H,t and c
∗
F,t. The steady state technological level is 1, as implied by εss = 0,

and also yss = 1 then. From the portfolio first order conditions, we obtain the steady state values of the

return rates, which is going to be the same for both of them

Rass = Rlss = Rmss =
e(σ−1)g

βss

This implies a zero steady state for excess returns as well Rxss = 0.

The linear approximation of the model is taken around a steady state in which the net debt position is

not necessarily assumed to be zero. From the budget constraint (17), we derive the steady state relation

between consumption and debt for a given net debt bss

css = 1 + bss (1−Rmss) (18)
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At the same time, the two market clearing conditions are

1 = λcss + (1− λ) c∗ss (19)

Y ∗0
Y0

= (1− λ) css + λc∗ss (20)

Equation (19) implies c∗ss = 1−λcss
1−λ ; substituting for this into (20), we obtain

Y ∗0
Y0

=
λ

1− λ +
1− 2λ

1− λ css

When bss = 0, css = 1 and the steady state ratio of the sizes of the two economies is 1 and we have a

perfectly symmetric model. The same result would occur if there is no home bias in consumption and λ = 1
2 ,

independently of the value of bss. In order to have both features in this model, we need to have Y ∗0 6= Y0;

however, for typical calibrations, the two countries will have comparable sizes and they would both satisfy

the large-country assumption.

1.6 Solution, Calibration, and Simulation

The solution of the model is obtained by standard approximation methods for a linearized first order version of

the model around the steady state defined above. I adopt the first step of the strategy proposed by Devereux

and Sutherland (2011) to deal with undetermined portfolio holdings when a first order approximation is

taken, which allows to solve for the dynamics of bt independently of the gross asset positions. Portfolio

holdings can then be found applying the second step of this solution strategy. This approach recognizes that

the first order linearization of Rxt b
m
t−1 in (17) is simply an i.i.d. component and treat it equivalently to an

extra exogenous shock in the model. The linearized budget constraint reads

b̂t = Rmss

(
R̂mt + b̂t−1

)
− zt −

1

bss
(ŷt − cssĉt) (21)

where x̂ represent the log-deviation of a variable x from steady state and R̂mt = 1
2

(
R̂at + R̂lt

)
. The term zt

corresponds to the linearization of Rxt b
m
t−1, which is simply zt = bmss

(
R̂at − R̂lt

)
= bmssR̂

x
t because R

x
ss = 0.

Given this step a solution of the model is straightforward.2

The benchmark calibration of the model relies on a very standard set of parameter values. The subjective

intertemporal discount factor is set to βss = .99 and the gross growth rate to g = 1.0025; assuming that

one period in the model corresponds to a quarter, these values imply that the annual discount factor is .96

2The solution exploits the property Et
(
R̂at+1 − R̂lt+1

)
= 0 from which R̂x can be substitute by an i.i.d. process. The

solution of the model is then computed in Matlab using the Dynare suite.
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and the annual growth rate is 1%. The consumption home bias parameter λ is chosen to be 0.75 which

ideally correspond to an import to GDP steady state ratio of 25%. ψ regulates the speed at which the net

wealth reverts to its steady state value after a shock, it must be positive and small so that this assumption

of stationarity does not affect the short run dynamics of the model, I pick ψ = .01. The CRRA coeffi cient

in the utility function is set to the very standard value of σ = 2 and the elasticity of substitution between H

and F goods φ is .9. This value falls in the lower end of the empirical estimates and it is preferred because it

allows for larger movements of the exchange rate that are not suffi ciently generated by the other components

of the model. Finally, I target a debt to GDP ratio bss = 4. Table 1 summarizes the picks in this calibration.

Calibration
Steady state net debt bss = 4
Discount factor βss = .99
Growth rate g = .0025
CRRA risk aversion coeffi cient σ = 2
Consumption home bias λ = .75
Goods subst. elasticity φ = .9
β responsiveness to cons. ψ = .01

Shocks:
Autoregressive coeffi cients ρε = .8

ρβ = .7
std productivity shock vε = .0007
std demand shock vu = .0008
std debt shock vz = .004

Table 1: Calibration of the model.

This calibration produces a steady state value for the quarterly gross returns of Rass = Rlss = 1.0125,

which corresponds to a 5% annual return. The steady states domestic consumption to output trend ratio

is css = .95, while the foreign ratio is c∗ss = 1.15. Being a net debtor in steady state, the H country

needs to run a steady state trade surplus; this surplus is 5% of GDP. This stylized model does not include

capital investment and government spending, which makes the entire trade balance determined only by the

consumption dynamics. This surplus is matched by the deficit of the F country, which implies a ratio of the

two production levels Y ∗0 /Y0 = 1.1.

In addition to this very standard core calibration, the shock processes are selected in order to broadly

reflect some of the moments of the US dataset analyzed in the paper. In particular, I focus on the relative

volatilities of the variables included in the VAR models with respect to the volatility of the external debt

and the correlation of debt and returns. The productivity shocks are assumed to be slightly more persistent

than the consumption shocks, so we set ρε = ρ∗ε = .8 and ρβ = ρ∗β = .7. The linearization of the budget

constraint in (21) also introduces an additional innovation that is used to enrich the overall dynamics of
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A: Relative Standard Deviations
y c d b γ RM RX RF

model .029 .049 .040 1 .035 .054 .002 .021
data .032 .062 .035 1 .057 .067 .045 .017

B: Correlations with debt
RM RX RF

model .119 −.101 −.202
data −.011 −.056 −.105

Table 2: Panel A: matching the relative volatility of the variables of the model with respect to debt. Panel
B: correlations with debt.

the model. The equation standard errors of a VAR estimated by OLS with the US data are used to get a

sense of the relative magnitude of the innovation to GDP , consumption and debt. The first two have similar

equations standard errors, while that of the debt equation is a factor 10 bigger.3 With this information in

mind, the standard deviations of the productivity and demand shocks are set to vε = .0007 and vu = .0008

respectively; the standard error of z is set to vz = .004.

Table 2 illustrates the performance of the calibrated model in terms of relative volatility of the variables

with respect to debt and the correlations with debt. The moments are computed from a 1, 000 periods sample

taken a the end of a 20, 000 periods simulation with innovations drawn from a joint normal distribution with

the standard deviations defined by vε, vu, and vz. The baseline calibration already allows the model to

replicate the relative volatilities in a satisfactory way, except for the excess returns and, in part, the real

exchange rate. The model generates a very small standard deviation compared to the data for RX ; for this

reason, it is necessary to introduce larger deviations to make the effects of detrending clear in the VAR of

Section 4.3 of the paper. On the other hand, a small φ is suffi cient to compensate at least in part for the

lower volatility of γ. The contemporaneous correlations are less satisfactory, especially for RM which also

has the wrong sign. The model generates stronger negative correlations between the other two returns and

the net debt. The model fails matching the correlations with consumption and trade balance (not reported)

due to the large persistent trade deficit of the US during a period of long-term growth of the debt position

of the country. This model instead is based on the necessary condition that a steady state net debt has to

be supported by positive trade surpluses, which is not found in the data in the post-1970 sample.

Figure 1 illustrates the fluctuations around their trends of the simulated series of output and consumption

(top panel) along with excess and average returns. The fluctuations of the two series are comparable and

consumption often crosses the output line causing a switch in the sign of the trade balance. In addition to

3A VAR with the usual 6 variables of the baseline specification of the paper, the consumption to GDP ratio and the GDP
cycle around an HP-filtered trend is estimated. The equation standard errors for GDP , consumption, and debt are rispectively
.007, .004, and .044.
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Figure 1: Simulated data for baseline calibration. Top panel: Output. Bottom panels: Excess and Average
Returns. Simulation sample: 1000 periods.
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Figure 2: Comparison between filtered deviations and deviations from the theoretical steady state. Simulated
data for baseline calibration. Left panel: Net debt. Right panel: Consumption.

that, the two bottom panels show the simulated RX and RM −RF . Both the excess returns and the average

return spread display the expected i.i.d. type behavior.

Figure 2 shows the effects of filtering the data to remove the trend for the net debt and consumption. The

figure compares the detrended series after the HP-filter is applied to the simulated data and the model-based

deviations from the steady state implied by the balanced growth path assumption necessary to linearize the

model. Even with the series generated by the baseline simulation, we can see that during periods of more

persistent deviations from the steady state, due to occasional sequences of similar shocks, filtering generates

much smoother cycle components. This is very clear, for instance, for the debt between period 600−800, but

the same is true also for consumption although the difference is less sharp. This difference in the outcome of

the filtering procedure is the underlying source that explains the spurious results about the predictability of

the excess returns in Gourinchas and Rey. The impulse response functions of non-detrended and detrended

VAR using this data are reported in Section 3.3.
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Figure 3: Comparison between filtered deviations and deviations from the theoretical steady state. Simulated
data for second scenario. Left panel: Full sample. Central panel: blow-up for the period 205:349. Right
panel: actual data - HP-filtered deviations Vs debt to GDP ratio.

In the data used to obtain the VAR results presented in Section 4.3, a sequence of negative demand shocks

to βt is mechanically imposed during the simulation in order to increase the persistence of the deviations

from the steady state and amplify the size of the effects described in the previous paragraph. This second

simulation is run for 10, 000 periods, but at period 5, 000 the shock to domestic preferences, ut, is set to −.01

and it assumed to be linearly re-absorbed for the following 500 periods. Finally, a sample of 1000 periods

centered around this block is selected for the VAR analysis presented in Figure 5. The two panels on the

left hand side of Figure 3 compare HP-filtered and theoretical deviations for the debt variable in this second

case; the last panel reports the conceptually equivalent comparison between the debt to GDP ratio and

HP-filtered deviations for the actual Gourinchas and Rey US dataset.4 The middle panel of the figure is a

blow-up of the left panel for the sub-sample 205:349; this panel shows that the shock sequence of the second

simulation produces a set of effects on the series qualitative comparable to what observed in the actual data.

2 Additional Approximation Results

2.1 Linearization à la Gourinchas and Rey

The data used in the detrended VAR model are treated following Gourinchas and Rey (2007) in order

to guarantee the best comparability between my framework and their results. This section, which largely

borrows from their work, shows how a constraint linearized following their approach is equivalent to the

linearization of the budget constraint in equation (5) of the paper taken around a time invariant steady

state. In order to preserve the logic of a balance growth path economy assumed in Gourinchas and Rey,

I will linearize the constraint standardized by net worth in equation (9) of the paper and copied below

for convenience. This choice is made for practical purposes only, since it does not bear any conceptual

4For graphical rendering, the filtered series is re-scaled in order to match the trough of the original ratio.

13



implication for the derivation, but facilitates the comparison with Gourinchas and Rey

lt − at = Rltlt−1 −Rat at−1 − (xt −mt) (22)

This constraint can be approximated around a deterministic economy in which a trend is allowed instead

of a fixed steady state point as done in this paper since lt, at, xt, and mt clearly show a time trend in the

data. The final form of the linearization, under the assumption of Gourinchas and Rey, are equivalent. Let

the counterpart of zt ∈ {lt at xt mt} in the deterministic economy be denoted by zsst . These variables allow

one to approximate for the deterministic time trend of the corresponding stochastic variables. On the other

hand, Rat and R
l
t are assumed to be stationary and to have a constant steady state deterministic counterpart.

The steady state level of the two returns, Rss, is the same and from the equivalent of conditions (A1) in the

Appendix of the paper it is found to be β̃
−1

= β−1Γ−1 where Γ is the steady state growth rate of household

net worth. The constraint in the deterministic economy can be written as

lsst − asst = β̃
−1 (

lsst−1 − asst−1

)
− (xsst −mss

t ) (23)

The deterministic economy is assumed to asymptotically settle along a balanced-growth path. This

assumption implies that lt, at, xt, and mt share a common deterministic trend and that the growth rates of

Lt, At, Xt, and Mt converge to that of net worth.5 A common trend can be expressed as zsst = z̄γt for all

zt ∈ {lt at xt mt}. The balanced-growth path implies limt→∞ γt = 1. If zsst = z̄γt, then the following ratios

that are used as weights in the log-linearization of the constraint are constant

µzt =
zsst

lsst − asst
=

z̄

l̄ − ā

and constraint (23) asymptotically is equivalent to

l̄ − ā = β̃
−1 (

l̄ − ā
)
− (x̄− m̄) (24)

From (24), it is easy to see that

β̃ =
1

1 + x̄−m̄
l̄−ā

A forward looking solution for b̂ in (26) below requires β̃ < 1, which holds if the condition x̄−m̄
l̄−ā > 0 is

satisfied. The trade balance and the net debt position must have the same sign, which occurs if either a long

5This point is made by Assumption 2 and 3 in Gourinchas and Rey (2007).

14



run net debt position is supported by a trade surplus or a positive net asset position by a deficit.

Letting ẑt indicate the log-deviations of zt from zsst and, in the same fashion, letting R̂it for i = a, l be the

deviation of the return rates from their steady state value, a log-linearization of (22) around (23) becomes

lsst l̂t − asst ât = β̃
−1
{
lsst−1

(
R̂lt + l̂t−1

)
− asst−1

(
R̂at + ât−1

)}
− (xsst x̂t −mss

t m̂t) (25)

Dividing (25) through by lsst −asst , remembering that under the aforementioned assumptions the weights are

constant and lsst−1 − asst−1 converges to l
ss
t − asst , it is easy to obtain

∣∣µl∣∣ l̂t − |µa| ât = β̃
−1
{∣∣µl∣∣ (R̂lt + l̂t−1

)
− |µa|

(
R̂at + ât−1

)}
− (|µx| x̂t − |µm| m̂t)

Finally, let us use the definitions of net debt in deviation from the deterministic trend b̂t =
∣∣µl∣∣ l̂t − |µa| ât,

the deviation trade balance d̂t = |µx| x̂t − |µm| m̂t, and the difference in returns in this linearized context

R̂∗t = |µa| R̂at −
∣∣µl∣∣ R̂lt to get

b̂t = β̃
−1
[
b̂t−1 − R̂∗t

]
− d̂t (26)

The absolute values in the weights are necessary to deal at the same time with the possibility of lsst − asst
being positive or negative, which is not relevant in this paper since the weights are not re-scaled by the net

position anymore. When lsst − asst < 0, for instance, a positive deviation of l̂t in µl l̂t − µaât would decrease

rather than increase net liabilities. For this reason, the absolute values must be introduced if we want to

jointly represent the two cases.

Equation (26) can be solved forward for b̂t−1 if β̃ < 1. After imposing the transversality condition

limT→∞ β̃
T
b̂t+T = 0 and using the time t equation again, we obtain (27) which is clearly equivalent to

equation (5) reported in Section 2.3 of the paper

b̂t−1 = Et
∞∑
i=1

β̃
i−1
(
R̂∗t+i + β̃d̂t+i

)
(27)

2.2 Second order approximation of the external constraint

In this Appendix, I briefly discuss the second order approximation to the budget constraint and show how the

theoretical results of the paper can be extended to higher order of approximation with only a few differences

due to the different characterization of the expected excess returns. First, let us introduce with a little abuse
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of notation a few useful definition to make the following exposition easier

B̂t +
1

2
B̂2
t = Lss

(
L̂t +

1

2
L̂2
t

)
−Ass

(
Ât +

1

2
Â2
t

)
D̂t +

1

2
D̂2
t = Xss

(
X̂t +

1

2
X̂2
t

)
−Mss

(
M̂t +

1

2
M̂2
t

)
R̂∗t +

1

2

(
R̂∗t

)2

= Ass

(
R̂At +

1

2

(
R̂At

)2
)
− Lss

(
R̂Lt +

1

2

(
R̂Lt

)2
)

R̂Xt +
1

2

(
R̂Xt

)2

=
(
R̂At − R̂Lt

)
+

1

2

[(
R̂At

)2

−
(
R̂Lt

)2
]

R̂Mt +
1

2

(
R̂Mt

)2

=
R̂At + R̂Lt

2
+

1

2


(
R̂At

)2

+
(
R̂Lt

)2

2


φ̂t = AssÂt−1R̂

A
t − LssL̂t−1R̂

L
t

I start with the linearization of the version of the budget constraint in period t in equation (1) of the

paper

B̂t +
1

2
B̂2
t = β−1

(
B̂t−1 +

1

2
B̂2
t−1 − R̂∗t −

1

2

(
R̂∗t

)2

− φ̂t
)
− D̂t −

1

2
D̂2
t (28)

Solving this equation forward for B̂t−1 + 1
2 B̂

2
t−1, applying a suitable transversality condition, and using once

again the linearized constraint at period t, the solution to the intertemporal linearized constraint up to the

second order of approximation is

B̂t +
1

2
B̂2
t = Et

∞∑
i=1

βi−1

[(
R̂∗t+i +

1

2

(
R̂∗t+i

)2

+ φ̂t+i

)
+ β

(
D̂t+i +

1

2
D̂2
t+i

)]
(29)

It is not diffi cult to derive a few other results involving the second order approximations of excess and average

returns. First, the well-known result about expected excess returns from the linearization of the portfolio

conditions (A1) in the Appendix of the paper

Et
[
R̂Xt+1 +

1

2

(
R̂Xt+1

)2

+ Λ̂t,t+1R̂
X
t+1

]
= 0 (30)

which shows that EtRXt+1 6= 0 up to a second order approximation. Second, an equivalent result for the

average return is

Et
[
Λ̂t,t+1 +

1

2
Λ̂t,t+1 + R̂Mt+1 +

1

2

(
R̂Mt+1

)2

+ Λ̂t,t+1R̂
M
t+1

]
= 0 (31)

Third, following the same steps as for the first order approximation, the two terms R̂∗t + 1
2

(
R̂∗t

)2

and φ̂t in
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the summation can be re-written as

R̂∗t +
1

2

(
R̂∗t

)2

= BMss

[
R̂Xt +

1

2

(
R̂Xt

)2
]
−Bss

[
R̂Mt +

1

2

(
R̂Mt

)2
]

φ̂t = B̂Mt−1R̂
X
t − B̂t−1R̂

M
t

where B̂t = LssL̂t − AssÂt was introduced above and we define B̂Mt = 1
2

(
LssL̂t +AssÂt

)
. The expected

value of these terms together simply becomes

Et
[
R̂∗t+1 +

1

2

(
R̂∗t+1

)2

+ φ̂t+1

]
= Et

[
BMss

(
R̂Xt+1 +

1

2

(
R̂Xt+1

)2
)
−Bss

(
R̂Mt+1 +

1

2

(
R̂Mt+1

)2
)
− B̂tR̂Mt+1

]
(32)

where EtR̂Xt+1 = 0 is used in φ̂t, since R̂
X
t+1 is only a first order term in the second order cross-product

B̂Mt R̂
X
t+1. This last equation shows that the effects of the excess return channel on the sustainability of the

external debt in (29) would begin to be apparent at the second order of approximation.

Furthermore, using the approximated portfolio relations (30) and (31) and the first order approximation

of the average return optimal condition EtΛ̂t,t+1 = −EtR̂Mt+1 into equation (32), we obtain

Et
[
R̂∗t+1 +

1

2

(
R̂∗t+1

)2

+ φ̂t+1

]
= BMssEtΛ̂t,t+1R̂

X
t+1 +BssEtΛ̂t,t+1R̂

M
t+1

+BssEt
[
Λ̂t,t+1 +

1

2
Λ̂2
t,t+1+

]
− B̂tEtΛ̂t,t+1 (33)

which provides a clear decomposition of the contributions of the different channels to the sustainability of

debt. In addition to trade, the last term in in (29), the SDF plays a major role in (33); as seen in the first

order approximation, this component is strictly tied to the movements of the average returns both in its

first and second order components. The average return channel affects sustainability also through its second

moment interaction with the SDF represented by EtΛ̂t,t+1R̂
M
t+1, which is a second order effect; an analogous

second-order second-moment effect of the excess return channel is finally represented by EtΛ̂t,t+1R̂
X
t+1.

3 Additional Empirical Results

This section presents further results in support of the empirical analysis in Section 4 of the paper.

3.1 Extended Non-Detrended VAR Analysis

The goal of this section is to show that neither future excess returns nor average return spreads are predicted

by the US debt per se; however, shocks to the debt induce a response of the expected stochastic discount
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Figure 4: Comparison of the responses to a b unit shock in the non-detrended model. Model 1
specification

(
d, b, γ, RM −RF , RX

)
; Model 2

(
d, b, γ, RF

)
; Model 3

(
d, b, γ, RM −RF , RX , RF

)
;

Model 4
(
d, b, γ, RM , RX , RF

)
. Band intervals correspond to the 14/86th and 5/95th percentiles.

Years from the impulse on the x-axis. The ordering of the variables in the Cholesky decomposition is(
d, b, γ, RM −RF or RM , RX

)
.

factor consistent with the solvency of the intertemporal budget constraint. Only when the positive feedback

effects of the SDF on the debt are taken into account, then some predictability of the returns is found too.

I follow an empirical strategy based on the comparison of the impulse response functions of four nested

specifications of the same type of VAR model. Each specification is based on a selection of the following

variables: the net foreign debt position bt, the trade surplus dt, the excess returns RXt , the depreciation rate of

the real exchange rate γt, the three-month treasury bill rate R
F
t , the spread between average returns and risk-

free rate RMt −RFt , or in alternative simply the average return rate RMt . The three-month US treasury bill rate

is used as a proxy of the actual risk-free rate of the economy in order to capture the effects of the SDF on the

intertemporal constraint. The structural shocks for the impulse response functions in each case are identified

by a recursive Cholesky scheme based on the general ordering
(
d, b, γ, RM −RF or RM , RX , RF

)
, as in

the main paper.

Figure 4 illustrates the response functions of b, RM − RF (or RM in the last model), RX , and RF

to a unit impulse to b for the four specifications of the non-detrended model. In Model 1, five variables

are considered
(
d, b, γ, RM −RF , RX

)
. At impact, the excess returns display a very large drop, but

18



then RX promptly reverts toward zero and remains non significant after the third quarter.6 Similarly, the

response of the spread is large on impact and for the next couple of periods, but it is zero again after

that. Finally, the shock to the debt is very persistent and the debt does not display any sign of mean

reversion. The second specification replaces RM −RF and RX with the three-month treasury bill rate only(
d, b, γ, RF

)
. The objective of this modification is to show that the debt shock triggers a response of RF

consistent with a positive contribution of the SDF to the sustainability of debt. The risk-free rate decreases,

and its response is statistically significant (the two pairs of dotted lines correspond to the 14/86th and

5/95th percentile intervals of the posterior distribution of the response functions computed by Monte Carlo

integration). The introduction of information about the SDF changes also the response of b, which is still

quite persistent but clearly mean-reverting now. The third specification puts together the full set of variables(
d, b, γ, RM −RF , RX , RF

)
. Adding the two return components, RM −RF and RX , to the specification

of Model 2 does not particularly affect the responses of RF , while at the same time the mean-reversion of

the response of b slightly improves. Part of the response of the excess returns is now positive and, although

not strongly significant, the difference with the first specification is quite striking. On the other hand, the

response of the average return spread remains extremely small and never significant. The last specification,

in Model 4, replaces the spread with RM in order to check whether the average returns mirrors the response

of the risk-free rate as predicted by the theory for its first order component. This modification does not

change the response of the other variables of the model and it shows how the zero response of the spread is

explained by the similarity in the responses of these two variables.7

The key justification of the valuation channel is based on the dependence of the American foreign asset

returns on the exchange rate. At impact, the real exchange rate appreciates followed by a long lasting, but

not significant, depreciation; the excess return seems to follow the exchange rate response quite closely. Also

the average return inherits its characteristics from the individual responses of asset and liability returns and,

in this respect, a drop of the average return spread should be mostly driven by a fall in the liability return

if the asset returns increase following the exchange rate depreciation. The relation between the responses of

the exchange rate and those of the returns after the debt shock definitely deserves more attention. In Figure

5, I consider the separate response functions of Ra and Rl to a b shock in a VAR model similar to Model 3

and 4 in which excess and average returns are replaced by the asset and liability returns in order to evaluate

their relative contribution to the two return channels. The first interesting observation is that the response

6The impact response is around −3. In the figure, the lower limit of the vertical axis is set to −1 in order to provide a better
illustration of the response in the following periods too. A similar truncation of the y-axis is applied for the responses of RM

and RM −RF , which display similarly large falls on impact.
7As a further robustness check, I consider a specification in which consumption growth is added to Model 3 since the marginal

utility of consumption would define the equilibrium SDF and it can improve the approximation of the expected discount factor.
The response functions are reported in Section 4.1.
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Figure 6: Response functions to a b unit shock for the shorter sample 1970:1-1990:1. Band intervals corre-
spond to the 14/86th and 5/95th percentiles. Years from the impulse on the x-axis. The same specification
as in Model 3 is estimated excluding the period of rapid growth of debt towards the end of the full sample.

of Ra follows the movements of the real exchange rate only at the very beginning of the response, and it is

basically zero after the fourth quarter. The positive excess returns observed in Model 3 in the medium term

is then mostly attributable to the response of Rl. This second effect cannot be directly attributed to the

exchange rate valuation channel per se, even though it can be quite large. This kind of evidence supports

the idea that the transmission of international shocks to the prices of assets can be very complex. Valuation

effects related to the exchange rate are important determinants of the composition of the excess returns,

because an exchange rate depreciation has a direct effect on Ra, but other less direct transmission channels

can be at work too.

Finally, Figure 6 illustrates the responses of d, b, and RX to a debt shock for the shorter sample 1970:1-

1990:1 for Model 3, the main specification in the paper, following the discussion at the end of Section 4.1.

3.2 Extended Detrended VAR Analysis

The variance decomposition for the detrended model is reported in Figure 7. This can be directly compared

to the decomposition of the non-detrended model in Section 4.1 of the paper. The effects of a shock to

the trade balance are explored in Figure 8 instead. The debt b̂ slightly decreases at the beginning and

turns positive after two years. However the estimation bands are very large and the response is largely not
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Figure 7: Variance decomposition for the main detrended model of the paper. Horizon of the forecast in
years on the x-axis and baseline identification ordering.

significant. Given the budget constraint, a sequence of trade surpluses is normally expected to decrease future

debt, but it is not clear from the figure.8 The response of R̂x to a d̂ shock is large and significantly negative,

while R̂m is only marginally affected by this innovation. Furthermore, these shocks explain a portion of the

variance of the excess returns comparable to that of the γ shocks in the variance decomposition, as reported

in Figure 7. This effect was missing in the long-run model. Gourinchas and Rey’s results suggest that the

valuation effects have been restraining the growth of the US international debt, in face of insuffi cient trade

balances; I find a sort of substitutability between d̂ and R̂x in the detrended model too, but this paper also

shows that excess returns are systematically driving solvency over the long run.9

Canzoneri, Cumby, and Diba (2001) use a VAR framework analogous to mine to test for non-Ricardian

regimes in the US government debt and deficit in the context of the fiscal theory of the price level. In this

literature, the concept of Ricardian regime hinges on the role of the price index as a real deflator of the debt.

The empirical methodology of this paper borrows from their approach in the use of the VAR and the impulse

response functions to investigate the relationships among the variables of the model; however, a complete

parallel with their analysis of the government debt is not feasible. At a first glance, the real exchange rate

could seem a suitable candidate to mirror, in the external budget constraint of a country, the role that the

price level has in the government budget constraint. However, my analysis shows that the valuation effects

on the international debt rely on multiple factors and that the real exchange rate is simply one of them.

The spectral decomposition of the responses of the average returns, the excess returns, and the risk-

8These responses may obviously depend on the ordering of the Cholesky decomposition. Switching the relative position of
debt and trade balance in order to constrain the response of the trade balance to be zero on impact makes the response of debt
negative for the first two years after the shock.

9There is a clear similarity between the rebalancing mechanism outlined in Gourinchas and Rey (2007) and the concept
of non-Ricardian regimes used in the monetary economics literature that studies the consolidate budget constraint of the
government sector (see Sargent 1982). The intertemporal government budget constraint links monetary and fiscal policies and
it requires that either taxes or seigniorage must be used to balance the government expenditure in present discounted value. A
non-Ricardian regime is defined as a situation in which inflation and seigniorage adjust in order to ensure that the intertemporal
budget constraint of the government is satisfied when taxes are not suffi cient to achieve the goal. In this case, following the
definitions by Leeper (1991), monetary policy is passive while fiscal policy is active and the regime is characterized by fiscal
dominance.
In Gourinchas and Rey, excess returns play the same role for the international debt as seigniorage does for the government

debt. A non-Ricardian regime in this framework can be defined as a situation of trade dominance in which excess returns
systematically adjust to help the trade surpluses to maintain the balance of the intertemporal constraint.
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free rates to the debt shocks can help us to further understand the different characteristics of these three

variables. Figure 9 illustrates the spectra of the responses in the two models where each spectral density has

been standardized by the variance of the respective response function.10 ,11 Two observations are noteworthy.

The first one is that the spectral densities of the risk-free rate responses in both the models are highly

concentrated around the low frequencies range [−.2 .2], the frequencies associated to periods greater than

32 quarters. Movements of the SDF linked to the debt mostly at low frequencies are consistent with the

theoretical idea that sustainability is primarily a long-run phenomenon. On the contrary, the majority of the

spectral densities of the responses of excess and average returns is distributed outside this set of frequencies.

A second interesting observation is about the differences in the responses of average and excess returns

in the two models. The spectra of these two variables in the detrended model have a relatively higher

concentration in the range corresponding to business cycle frequencies, between .3 and 1.5, and display a

drop at the very low frequency. Even though a similarly high relevance of the business cycle frequencies

is found in the non-detrended model for the excess returns too, the detrending procedure has a significant

impact on the spectrum of these variables at the very high frequency. As it can be seen in Figure 9, these

high frequencies (3 quarters or less in period) are very important in the non-detrended model, becoming

even the most important frequencies for the average return, but their contribution to the spectrum is largely

reduced after detrending the data. In any case, also this evidence can be considered as broadly consistent

with the weaker involvement of excess and average returns in the sustainability of the US debt described in

10Each spectral density in Figure 9 is smoothed using a Gaussian kernel. The point estimates of the spectrum for a given
frequency are obtained as the discrete fourier transform of the sample autocovariances of the respective response function
truncated at T lags. This allows to sample 2T −1 frequencies, evenly spaced between [−π, π]. In order to increase the finesse of
the smoothing, the spectrum is re-sampled at evenly spaced frequencies for n times, offsetting the first frequency each time by
one nth of the distance between two consecutive frequencies. The n(2T − 1) point estimates of the spectrum are then averaged
applying the normal weighting kernel in which use is made of the smoothing factor√

n (2T − 1)
2πh0

where the parameter h0 controls the smoothness of the kernel. Figure 9 is based on the choice of parameters T = 40, n = 3,
and h0 = 0.2.
11These spectral densities can be seen as the gains of the fourth, fifth, and sixth components of the frequency responses to

an impulse to the second component of the structural innovations vector.
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Figure 9: Spectra of the response of average returns, excess returns, and risk-free rate to a unit debt shock in
the two models. Red lines refer to the non-detrended model and blue lines to the detrended model. The thick
lines represent the median of the posterior distributions of the spectra; the dash-dot intervals correspond to
the 14/86th percentile bands. Spectra are normalized by the variance of the response and computed using
a normal Kernel (see footnote 26 for more details).

the rest of the empirical analysis of the paper.12

3.3 Extended Simulated-Data Analysis

In addition to the example used in Section 4.3 of the paper, based on the simulation characterized by the

persistent deviations from the steady state mechanically introduced in the second simulation described in

Section 1.6, I report the equivalent evidence for the first simulation with regular innovations and under the

baseline calibration of the model in Figures 10-11. A two-lag VAR model is preferred in this case to the

four-lag specification of the paper for graphical reason; the results hold also with four lags, but they would

be simply delayed by a few periods. The shift in position and significance of the excess returns is preserved

also with this simulation; the average return spread is now marginally significant, but only for two periods

and reverts to zero very quickly and this effect is even smaller if four lags are used in the estimation. The

response of the risk free rate is large and strongly significant as found in all the other cases, both empirically

and theoretically. Overall the main results about the spurious predictability of excess returns are supported

by this evidence.

Finally, Figures 12-13 illustrates the same set of responses for the second type of simulation. It is worth

noticing how the average return spread response is now basically zero over the entire horizon , while the

average return shows a negative and significant response for the first five periods. In all the cases I tried,

the response of the average return was always negative and significant, but typically very short in time. The

other responses share the same characteristic as in the previous set of figures. The trade balance response is

12The choice of the smoothing parameter h0 may clearly affect the shape of these two spectral densities. The results are very
similar for values of h0 between 0.1 and 0.4. For values smaller than 0.1, which correspond to a very low degree of smoothing,
the drop of the spectrum in the low frequency range is quite large too. For values greater than 0.5, the high smoothing makes
the spectrum just flat in the low frequency range in both models. The same results are confirmed replacing the Gaussian with
an Epanechnikov kernel and keeping the same smoothing factor. Since this kernel reduces the degree of smoothness for given
h0, the spectra display larger drops at low frequencies but their relative magnitude is preserved.
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Figure 10: Response functions to a b unit shock. Non-detrended VAR model and simulated data based on
the first simulation in Section 1.6. Band intervals correspond to the 14/86th and 5/95th percentiles. Years
from the impulse on the x-axis. The variables in the model are the net foreign debt position bt, the trade
surplus dt, the spread between average returns and three-month treasury bill rate RM − RF , the excess
returns RXt , the depreciation rate of the real exchange rate γt, the risk free rate R

F
t . The vertical axis

lower bound of the third panel is truncated to improve the visualization of the effects after the large impact
response of RX . The identification ordering is the same as in the main paper. Years from the impulse on
the x-axis (4 periods in the simulation).
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Figure 11: Response functions to a b̂ unit shock. Detrended model and simulated data based on the first
simulation in Section 1.6. The variables in this specification are net debt b̂t, trade surplus d̂t, depreciation
rate of the real exchange rate γt, average return rate R̂

m
t , excess returns R̂

x
t , and of the real risk free rate R̂

F
t .

The identification ordering is the same as in the main paper. Band intervals correspond to the 14/86th and
5/95th percentiles. The vertical axis lower bound of the third panel is truncated to improve the visualization
of the effects after the large impact response of R̂xt . Years from the impulse on the x-axis (4 periods in the
simulation).
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Figure 12: Response functions to a b unit shock. Detrended model and and simulated data based on the
second simulation in Section 1.6, used also in Section 4.3 of the paper. Band intervals correspond to the
14/86th and 5/95th percentiles. Years from the impulse on the x-axis. The variables in the model are the net
foreign debt position bt, the trade surplus dt, the spread between average returns and three-month treasury
bill rate RM − RF , the excess returns RXt , the depreciation rate of the real exchange rate γt, the risk free
rate RFt . The vertical axis lower bound of the third panel is truncated to improve the visualization of the
effects after the large impact response of RX . The identification ordering is the same as in the main paper.
Years from the impulse on the x-axis (4 periods in the simulation).
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Figure 13: Response functions to a b̂ unit shock. Detrended model and simulated data based on the second
simulation in Section 1.6, used also in Section 4.3 of the paper. The variables in this specification are net
debt b̂t, trade surplus d̂t, depreciation rate of the real exchange rate γt, average return rate R̂

m
t , excess

returns R̂xt , and of the real risk free rate R̂
F
t . The identification ordering is the same as in the main paper.

Band intervals correspond to the 14/86th and 5/95th percentiles. The vertical axis lower bound of the third
panel is truncated to improve the visualization of the effects after the large impact response of R̂xt . Years
from the impulse on the x-axis (4 periods in the simulation).

positive and very significant as expected from the theory for trade channel; on the other hand, the exchange

rate exhibits a long lasting and significant appreciation, which is at odds with the empirical analysis. Both

these responses are available form the author upon request.

4 Sensitivity Analysis

This section provides some extra detail on the overall suitability of the estimated VARs and of the prior

parameters I use in the regressions.
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4.1 Robustness of the Analysis

Comparing the baseline non-detrended VAR(4) model with VAR models with 2 and 6 lags, the basic nature

of the responses remains the same for the majority of the variables. Typically, more lags make the initial

portion of the impulse response functions more jagged, especially for γ and the returns, but the relatively

stronger role of the risk-free rate is confirmed. Another important difference is that with two lags the excess

returns remain negative for a a few periods after the shock, although being not significant, and it is then zero

after that. The models with two or four lags are basically identical for the detrended VAR; increasing the

number of lags reduces the fit of the model without modifying the overall outlook of the response functions.

An important point to discuss is the selection of the parameters for the Minnesota prior and the effects

of different choices of the priors on the impulse response functions. The parameters used in the main results

of the paper, φ0 = .4 and φ1 = .5, are quite standard. The choice of φ1, the relative tightness parameter for

the lags of the other variables of one equation, does not affect the results in a particular way once φ0 is set.

In the detrended VAR, the selection of φ0 does not matter for the results either; therefore, φ0 is studied in

function of the behavior of the non-detrended VAR.

The results in the paper are obtained for φ0 = .4, which is in the middle range of feasible values. For

looser priors, i.e. bigger values of φ0, the same results are obtained. Considering smaller values of φ0, around

.1, increases the persistence of debt shock without having a strong impact on the other responses. Figure 14

illustrates the responses of RM −RF , RX , and RF to a b shock for a tighter prior corresponding to φ0 = .1

for model specification 3. Overall the conclusions are very robust to many possible parameterizations.

The effects of a different ordering of the variables in the Cholesky decomposition on the reciprocal

responses of d and b are minimal for both detrended and non-detrended model. As known, the relative

position of d and b does not matter for the responses of the subsequent variables of the VAR. The relative

position of γ and RX does not matter for the responses of the excess returns to b and d shocks either. The

results for the detrended model are obtained under a specific choice of the smoothing parameter of the HP

filter based on the Gourinchas and Rey (2007)’s approach. A more conventional smoothing parameter of

the HP filter can be used to isolate the business cycle frequencies of the series. Also in this case, the overall

effects remain qualitatively the same. The response functions are in general very significant, even though

they are less persistent.13

Figure 15, instead, illustrates the responses of the returns and the debt to a unit debt shock in a version

of the non-detrended model - specification 3 - in which consumption growth is added to the variables of

the model. Consumption is related to the SDF definition through marginal utility and it can help in

13The plots for this last case are not reported here, but they are available from the author. The smoothing parameter of the
HP filter is set to 1600.
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empirically approximating the discount factor in the VAR model. The main differences in the results using

the consumption specification of the model are the stronger mean-reversion of the debt shocks and a slightly

less significant response of RF compared to the non-detrended model in the paper. This specification is

consistent with the evidence that links the sustainability of the US international debt position primarily to

movements of the SDF.

4.2 Priors Selection, Forecast, and Overfitting

As discussed in Section 4.1, looser and tighter prior parameterizations of φ0 return similar results in terms

of impulse responses to the debt shocks. Here, I compare three values of φ0 ∈ [.1 .4 .9] corresponding to a

tight, an intermediate, and a loose prior respectively. The fit of the models under any of the three parameters

is very similar in terms of forecast of the variables from the initial point. Figures 16 - 19 report the forecasts

of the variables of the model from the initial point for the alternative choices of φ0 in the non-detrended

VAR model (specification 3) and for the main detrended model. The baseline specification does not show

any evident over-fitting of the series, which means that the number of lags specified in the VAR regressions

is not implausibly high. The problem of large initial transients considered by Sims (1996) is not an issue

here. Therefore, it can be excluded that the root close to unit that characterizes the non-detrended VAR is

artificially generated by the estimation procedure; the Minnesota prior is enough to correct for it. The main

difference between the three priors is represented by the slightly larger bands on the forecasting of the debt

for the intermediate prior.

From the companion form of the VAR under different specifications, I compute the eigenvalues of the

system. The baseline non-detrended VAR (specification 3) has one eigenvalue close to unit, but still smaller,

unit and the second largest eigenvalue definitely below 1: the values are .9987 and .9436. For specification

4 the two largest eigenvalues are .999 and .9444. The two largest eigenvalues of specification 2 of the non-

detrended model are .9922 and .9524; while for specification 1 we obtain a largest root of the system bigger

than one 1.0099. The baseline specification for the detrended VAR gives a strongly stationary system in

which the largest eigenvalue is 0.9329 instead.

From the companion form, it is possible to reformulate the VAR model in the Jordan form by applying

the Jordan decomposition of the companion matrix of the VAR. The new system is defined in a new set of

variables, which are combinations of the variables in the companion form of the VAR (with weights given

by the elements of the left eigenvectors of the companion matrix). In the Jordan form, the VAR in levels is

reformulated as a set of 24 independent equations since there are 6 variables and 4 lags in the original VAR.

Let Zt be the vector of the new variables in the Jordan form and Ω its covariance matrix. The new
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Figure 14: Response functions to a b unit shock. Non-detrended VAR model - specification 4 and tight prior
for φ1 = 10. Band intervals correspond to the 14/86th and 5/95th percentiles. Years from the impulse on
the x-axis. The limits of the vertical axes for the RM and RX responses are set to (−1 .75) and (−1 .5)
respectively. Baseline identification ordering of the variables.
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Figure 15: Response functions to a b unit shock in the model with consumption c. Non-detrended VAR model
- specification

(
c, d, b, γ, RM −RF , RX , RF

)
. Band intervals correspond to the 14/86th and 5/95th

percentiles. Years from the impulse on the x-axis. The limits of the vertical axes for the RM −RF and RX
responses are set to (−.8 1.5) and (−1 .5) respectively. Baseline identification ordering of the variables with
c in first place.
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Figure 16: Initial point forecasts for the non-detrended VAR - specification 4 and φ1 = 103. Solid line actual,
dotted line forecast. Band intervals correspond to the 14/86th percentiles.
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Figure 17: Initial point forecasts for the non-detrended VAR - specification 4 and φ1 = 10. Solid line actual,
dotted line forecast. Band intervals correspond to the 14/86th percentiles.
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Figure 18: Initial point forecasts for the non-detrended VAR - specification 4 and φ1 = .5. Solid line actual,
dotted line forecast. Band intervals correspond to the 14/86th percentiles
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Figure 19: Initial point forecasts for the long-run VAR - specification 3 and loose prior for φ1

variables in Zt can be used to construct a Chi-squared test for the plausibility of the initial conditions of the

data in relation to the distribution of Zt implied by the posterior median estimates of the VAR model. In

fact, the statistic Z̃
′

tΩZ̃t (where Z̃t is the deviation of Zt from its mean) must have a Chi-squared distribution

with n degree of freedom, where n is the number of elements in Zt.14 If the test statistic evaluated at the

initial point is too large, then we can conclude that the initial point is at odds with the distribution implied

by the VAR estimates. At that point, one can decide how to use this information in order to evaluate the

plausibility of the posterior estimates of the model in relation to the initial point. This can also be used in

order to compare different models. Models with smaller Z̃
′

0ΩZ̃0 may be preferred to models with very large

statistics.

The Chi-squared test under the different specifications of the model does not reject the initial point

for any of them relative to the fit of the rest of the sample, even though the fit slightly improves towards

the end of the sample. Large differences are not found in the overall distribution of the other observations

either. Among the four versions of the non-detrended VAR model, model 2 shows the highest fit, indirectly

confirming the main contribution of the risk-free rate to the dynamics of the system relative to the other

return channels.

14 If the system has a non-stationary eigenvalue, the variance and mean of the corresponding element of Zt are not well-defined
any more. However, we can still construct the Chi-squared test for the remaining n− 1 stationary components of Zt.
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