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Abstract

This document provides additional material to the submitted version of the paper
Foreign Aid and Growth: A Sp P-VAR Analysis Using Satellite Sub-National Data for
Uganda for online publication.

S1 Sp P-VAR Specification and Diagnostic Assessment

This Section of the Appendix reports important details and results supplementing the dis-
cussion of the model selection in Section 4.1 of the paper.

S1.1 Spatial Autocorrelation

Table S1 illustrates the Moran’s I global spatial autocorrelation index for light and oda
along with the one-side p-value for statistical significance. One-side significance values are
usually preferred in economic applications because the relevant case of spatial autocorrela-
tion of economic variables is generally thought to imply positive correlations. The spatial
autocorrelation is conducted for each year of the sample and it relies on the spatial conti-
guity matrix described in the main paper, which defines as neighbors two districts sharing
a border. We find that the spatial autocorrelation of luminosity is consistently positive and
significant across periods, while there is no indication of spatial autocorrelation for aid.1

Table S2 reports the Moran’s I index for the estimated residuals of the baseline model.
The spatial autocorrelation of the residuals of the luminosity equation is satisfactorily con-
trolled for, while we observe more instances of spatial autocorrelation in the residuals of the
ODA equation especially in the second most recent years of the sample.

1The index is computed using the Stata command spatgsa.



Years

96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12

light .276 .024 .199 .191 .191 .191 .234 .278 .256 .231 .142 .216 .227 .183 .229 .274 .325
(.002) (.005) (.014) (.017) (.017) (.017) (.005) (.001) (.003) (.006) (.05) (.008) (.005) (.02) (.006) (.002) (.000)

oda .201 0.079 .012 .041 -.037 .027 .087 .021 .032 -.135 -.089 -.004 .012 .041 .089 -.028 .002
(.004) (.104) (.326) (.238) (.465) (.268) (.104) (.296) (.255) (.146) (.274) (.396) (.345) (.043) (.127) (.496) (.384)

Table S1: Moran’s I spatial autocorrelation index for the two endogenous variables of the
model. Spatial contiguity matrix define by shared borders. Sample 1996:2012, p-values in
parentheses.

Years

99 00 01 02 03 04 05 06 07 08 09 10 11

reslight .219 .016 .076 -.029 -.132 .133 .122 -.119 .031 .357 -.088 .017 .288
(.007) (.335) (.154) (.238) (.154) (.061) (.069) (.187) (.286) (.000) (.278) (.328) (.001)

resoda .162 .031 .287 .142 -.022 .200 .149 .206 .316 .213 .437 .094 .237
(.029) (.265) (.001) (.052) (.316) (.015) (.036) (.014) (.001) (.005) (.000) (.119) (.005)

Table S2: Moran’s I spatial autocorrelation index for the residuals of the baseline model.
Spatial contiguity matrix define by shared borders. Estimation sample is 1996:2012, then
the lags of the model and instruments, and the data transformation reduce the observed
residual series to the years 1999:2011. P-values in parentheses.

S1.2 Cross Section Dependence and Time Autocorrelation

We conduct a Pesaran (2004)’s CD test on the same two sets of residuals as well. The
tests strongly indicate cross-sectional dependence in both cases, with test statistics of 24.5
for the residuals of luminosity and 8.9 for the ODA residuals (both corresponding to p-
values of zero). The average absolute values of cross section correlations are .33 and .30
respectively. Cross section dependence is then explicitly accounted for by transforming the
data in deviations from the sample time averages (time demeaning).

The effectiveness of time fixed effects is assessed conducting the Sarafidis, Yamagata, and
Robertson (2009)’s test on two dynamic panel data models that individually replicate each
equation of the baseline Sp P-VAR. Although not exactly the same as the full VAR model,
the equation-wise models try to exactly replicate the Sp P-VAR specification and estimation
approach, and we believe these models offer a valuable guideline for our testing purposes.
The dynamic panels are estimated by GMM using Roodman (2009)’s Stata package xtabond2.
In particular, dynamic lags of both oda and light are used as the GMM y-instruments, while
lags of the spatial terms and rainfall constitute the other instruments.2 The results of these

2Instruments are automatically constructed by xtabond2 replacing missing values with zeros, as suggested
by Holtz-Eakin, Newey, and Rosen (1988), while this adjustment is not applied in our baseline regressions.

2



estimates are illustrated in the first two columns of Table S3.
Sarafidis, Yamagata, and Robertson (2009) show that time fixed effects (and time de-

meaning) are sufficient to eliminate the cross-section dependence in the residuals of a dynamic
panel if the difference between the overall Hansen’s J statistic and the statistic only for the
non-y restrictions is not too large. The corresponding dynamic panel models of our baseline
P-VAR (column a and b) satisfy this condition. We can take this as suggestive evidence that
time demeaning in our P-VAR model is sufficiently mitigating concerns about cross-sectional
dependence as well.

The same two columns of Table S3 provide information about the time serial correlation
of the residuals of the models through the Arellano-Bond first-difference testing procedure.
This test checks for autocorrelation in the first difference of the residuals. The first difference
should always exhibit first-order autocorrelation since ut−1 is present both in ∆ut and ∆ut−1,
but a second-order correlation in the difference is evidence of first-order autocorrelation in
the level of residuals. As well known, the correctness of the choice of the lags of the y-
instruments in the GMM estimation hinges on the lack of serial correlation. Column (b)
illustrates that the residuals of the ODA equation have a first-order correlation (rejection of
the null of no correlation at 1.1%). Further evidence about the first-order autocorrelation
of the residuals is obtained from a P-VAR in the estimated residuals of a just identified
P-VAR(1) model for oda and light in which only one-lag instrument is used. The estimates
of the residuals VAR is reported in Table S4. The oda residuals exhibit a very significant
autocorrelation and serial correlation with the light residuals too. Lagged oda residuals
affect the current light residuals too.

We report in column (c) of Table S3 the estimates of the dynamic panel version of the oda
equation of the P-VAR model that includes the fourth lag instrument then. As in columns
(b) we find autocorrelation of the first order in the Arellano-Bond test, but we also find
some autocorrelation of the fourth-order. This second result is quite important because,
jointly with the response functions in Figure S1, it suggests to limit the range of lagged y-
instruments to 2 and 3 only. The Hansen’s J statistic is only marginally significant, but more
importantly the difference-statistic for the y instruments (excluding the other instruments)
clearly rejects (with p-value .03) the exogeneity of these instruments.

Finally, as a last piece of evidence about this high-order autocorrelation in the residuals,
we compare the time-space response of the just identified Sp P-VAR in Figure S1, which
we can say with confidence does not satisfy exogeneity of the GMM restrictions, with the
response from an Sp P-VAR model that uses lags 2 to 4 as y-instruments. In both cases
the response of nightlights to the ODA shock becomes negative on impact, and the response
reverts to zero after that. This response is largely at odds with that in the baseline model.

We conclude this Section with the histogram of the estimated residuals of the baseline
P-VAR model, along with a QQ plot for normality distribution visual assessment, and the
plots of the ODA and light series by district. Figures S2 and S3 illustrate the histograms
and QQ plots respectively. Overall, the distributions are normal, but with some heave tails
in both residuals, on the left for lights and on the right for oda. However, since the GMM
does not rely on normality of the residuals, this is a relatively secondary concern.
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lighti,t odai,t odai,t
(a) (b) (c)

lighti,t−1 .709 .008 -.018
(.127)*** (.091) (.126)

odai,t−1 .043 .658 .671
(.066) (.069)*** (.093)***

raini,t .230 -5.871 .29
(1.995) (2.623)** (2.896)

lightsi,t .015 .833 .305
(.234) (.267)*** (.236)

odai,t -.038 -.411 -.046
(.156) (.224)* (.228)

N. of Obsservations 504 504 468
N. of Instruments 10 10 14

Arrelano-Bond Tests - First Difference

For AR(1) z=-3.37 z=-4.56 z=-3.78
[.001] [.000] [.000]

For AR(2) z = .21 z=-2.55 z=-.23
[.835] [.011] [.818]

For AR(3) z = -.02 z=1.29 z=.86
[.987] [.197] [.392]

For AR(4) z = -.13 z=.46 z=-1.09
[.895] [.647] [.275]

For AR(5) z = .23 z=1.22 z=2.24
[.818] [.224] [.025]

Difference in Hansen Tests

All IV χ2(5) = 7.20 χ2(5) = 2.52 χ2(9) = 16.50
[.206] [.774] [.057]

Excluding Y -IV χ2(1) = .52 χ2(1) = 1.02 χ2(3) = 3.21
[.469] [.313] [.360]

Difference χ2(4) = 6.67 χ2(4) = 1.50 χ2(6) = 13.29
[.154] [.827] [.039]

Table S3: Dynamic panel estimation of the single P-VAR equations – Columns (a) and
(b) replicate the baseline specification; column (c) uses lags 2 to 4 as instruments. S.E. in
parenthesis; p-values in brackets; significance levels 1%, 5%, and 10% indicated by ∗∗∗ , ∗∗ ,
and ∗.
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light rest oda rest
(a) (b)

rlight rest−1 .019 .084
(.061) (.043)**

oda rest−1 -.087 .198
(.046)* (.967)**

F.E. Y
Obs. 468
N. of Panels 36
Instruments L1

Table S4: P-VAR in the residuals estimated from a just identified version of the main paper
model. Standard errors indicated in parenthesis, with significance levels of respectively 1%,
5%, and 10% indicated by ∗∗∗ , ∗∗ , and ∗.

(a) Only first lag instrumentation (b) Lags 2 to 4 instrumentation

Figure S1: Sp P-VAR specification assessment – Time-space responses of nightlights to a
one standard deviation shock to ODA. Years from the shock on the x-axis.
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(a) Light Equation (b) ODA Equation

Figure S2: Sp P-VAR model: Histogram of the estimated residuals of the baseline model.

(a) Light Equation (b) ODA Equation

Figure S3: Baseline Sp P-VAR: QQ plots for the normality distribution of the residuals.
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S1.3 Panel Unit Root Tests

Figures S4 and S5 illustrate the time series of the two endogenous variables of the model
from which the cross-section mean has been subtracted for each point in time. We report in
Tables S5 and S6 the results of the panel unit root tests used to support the Arellano-Bond
GMM estimation approach of the Sp P-VAR in the paper.

When testing for panel unit roots in a panel framework, two types of tests are available
depending on whether cross-sectional dependence is explicitly taking into account by the test
procedure. The so called first generation tests are based on the cross-sectional independence
assumption. Different options are available for this type of test, but probably the most
established test of this group is the IPS test by Im, Pesaran, and Shin (2003). This test
does not account for cross-sectional dependence, but allows for heterogeneity in the presence
of unit root across panels and it is based on individual (augmented) Dickey-Fuller (ADF)
statistics averaged across groups. The null of a unit root for all the series of the panel is
contrasted to the alternative hypothesis that some (but not all) of the individual series to
have unit roots.

In order to check to what extent this test could apply to our variables, we conduct a
preliminary Pesaran (2004)’s CD test on the the two endogenous variables of the model for
generic cross-section independence. In spite of the specific form of spatial correlation found in
the data, the CD tests strongly indicate the cross-sectional independence null is not rejected
for both variables, with test statistics of .93 for ODA and −.86 for nightlights (p-values of .35
and .39 respectively). This evidence, and the discussion in Section 4.1 of the paper, allows
us to gather some initial evidence about the stationarity of aid and nightlight from the IPS
test. Table S5 illustrates the results for this test, in which the ADF equations are specified
with a constant (drift), but no time trend.3 The IPS statistics are largely negative for all
specifications, rejecting the null hypothesis of non-stationarity at more than 1% significance
level with either AIC and BIC used as selection criteria for the lags in the ADF equation.

The second generation tests relax the cross-sectional independence assumption. The
issue of how to specify the cross-sectional dependence is not obvious and different solutions
are possible. We consider two related tests in which the cross-sectional dependencies are
modeled as common factors by decomposing the individual series of the panel into three
components: a deterministic component, a common component, and an idiosyncratic error
term. This type of approach has been introduced by Bai and Ng (2004), who developed
the popular PANIC Test in which the common component is estimated by using principal
components. A variation of this test is PANICCA by Reese and Westerlund (2016), where
principal components in the PANIC approach are replaced with cross-section averages.

These tests test for stationarity of the common and idiosyncratic components separately,
and overall stationarity of the series is achieved if both of the components are stationary.
Bai and Ng (2004) develop a set of different statistics to test for stationarity in the two
components (MQc and MQc for multiple factors; Pa, Pb, and PMSB for the idiosyncratic
term in Table S6). An ADF statistics is used by PANICCA since only one common factor
is used. These statistics are reviewed in Reese and Westerlund (2016).

Table S6 illustrates the results for these tests, in which the deterministic component

3Since all the tests presented here reject the non-stationarity of the variables of the model already with
a basic drift specification, the time trend is excluded.
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of the series is a specified with a constant (drift) again. The values of the statistics are
typically negative and strongly significance for both oda and light for different specifications
of the PANIC test as well as for PANICCA; the results do not depend on the use of AIC
or BIC as selection criteria for the lags in the ADF equation; the significance of the tests is
consistently higher than 5%, but it slightly deteriorates settling at about 10% for oda when
a larger number of common factors is selected. Overall the results in these two tables allow
us to assume stationarity of the endogenous vector with confidence.

IPS Test

light oda

Stat. -7.74 -7.79 -2.77 -2.77
(.000) (.000) (.003) (.003)

N 36 36 36 36
T 17 17 17 17
Lag Criteria AIC BIC AIC BIC

Table S5: IPS Panel unit root tests for oda and light. IPS test by Im, Pesaran, and
Shin (2003) and implemented in Stata with xtunitroot, ips command. Variables are cross-
section demeaned. Statistics p-values reported in parentheses. The null hypothesis is non-
stationarity.
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PANIC Test PANICCA Test

light oda light oda

ADF -3.98 -3.86
(.000) (.000)

MQc -16.65 -15.26 -15.98 -16.78
(.000) (.000) (.000) (.000)

MQf -10.37 -14.50 -8.87 -15.06
(.000) (.000) (.000) (.000)

Pa -7.47 -4.53 -3.72 -1.54 -8.98 -5.32
(.000) (.000) (.000) (.062) (.000) (.000)

Pb -4.21 -3.04 -2.49 -1.25 -4.48 -3.08
(.000) (.001) (.006) (.105) (.000) (.001)

PMSB -2.39 -1.98 -1.89 -1.09 -2.26 -2.22
(.008) (.024) (.029) (.138) (.012) (.013)

N 36 36 36 36 36 36
T 17 17 17 17 17 17
Lag Criteria BIC BIC BIC BIC AIC AIC
N. Factors 3 5 3 5 1 1

Table S6: PANIC and PANICCA Panel unit root tests for oda and light. PANIC test
by Bai and Ng (2004) and PANICCA test by Reese and Westerlund (2016); implemented
in Stata using the xtpanicca package. Variables are cross-section demeaned. Statistics p-
values reported in parentheses. The null hypotheses are non-stationarity for the the common
and idiosyncratic components. See Reese and Westerlund (2016) for the definition of the
statistics.
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Figure S4: Time series of the variable lighti,t by district in deviation from cross-section means.
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Figure S5: Time series of the variable odai,t by district in deviation from cross-section means.
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S2 Predictive Model Diagnostic Assessment

The predictive model is a panel with T = 2 only, which is then estimated with fixed effects
in differences. Given the most basic form of panel when the time observations are only 2,
autocorrelation and cross-sectional dependence of the residuals are a relatively secondary
issue to consider since there is no time dimension on which test these correlations. Never-
theless, we can at least check for the specific type of cross section dependence due to spatial
autocorrelation, which we explicitly account for in the regression model by spatially filter-
ing the data before estimation. Table S7 illustrates the degree of spatial autocorrelation
measured by the Moran’s I index of the variables used in the two versions of the predictive
model (equation 3 in the paper) we estimate. The Eigenvalues spatial filtering technique
gently separate the spatial component of a spatial variable from the ”trend” component; we
see that post-filtering autocorrelations significantly drop. As a consequence, the residuals of
the regressions should exhibit only small spatial autocorrelation. For the model with house-
hold weekly consumption expenditure the Moran’s I is still somewhat large and significant
(.161 with p-value .04), while for the model with average household monthly expenditure in
non-durable goods the index is .124 (p-value .07).

We test for heteroskedasticity in the residuals of the two panel models sing the modified
Wald statistic for group-wise heteroskedasticity in the residuals of a fixed effect regression
model. In both cases the test strongly reject homoskedasticity (p-values of 0), therefore
we proceed with a correction for heteroskedasticity-robust standard errors in the regression.
Finally, we use a series of plots to assess the normality of the residuals (Figure S6) and to
investigate for the presence of outliers in the data (Figure S7) for the two versions of the
model.

For the normality, we use a standard QQ plot of the residuals Vs. a normal distribution.
We do not observe large deviations from the normality distribution or systematic patterns
in the residuals. For the outliers, we use a scatter plot of expenditure variable Vs. the
nightlight variable. The paper describes the differences in definition of the expenditure
variable for either version of the model. Also in this case, we don’t find observations that
particularly emerge as outliers.

12



Original Filtered

99 09 99 09

weekly expendit. -.114 .319 .073 .135
(.194) (.000) (.167) (.059)

monthly expendit. .144 .260 .055 .066
(.047) (.003) (.210) (.186)

light .211 .259 .107 .102
(.010) (.002) (.097) (.103)

Table S7: Moran’s I spatial autocorrelation index for the expenditure variables and lumi-
nosity used in the predictive regression (3) of the paper. Spatial contiguity matrix define by
shared borders. P-values in parentheses.

(a) Weekly Expenditure (b) Monthly Expenditure

Figure S6: Predictive model - equation (9) in the main paper: QQ plots for normality
distribution of the residuals.
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(a) Weekly Expenditure (b) Monthly Expenditure

Figure S7: Predictive model - equation (9) in the main paper: scatter plots of expenditure
Vs. nightlights.
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S3 Results Robustness Assessment

Following the discussion of the robustness checks in Section 4.2 of the paper, this Section
illustrates the results for the additional robustness exercises as mentioned in the main paper.

S3.1 Extended Robustness Checks

We start with Figures S8-S13, in which we drop one district at the time and recompute the
time-only impulse response functions under the same baseline specification. As an important
detail we note that, while a district is excluded from the cross-section of the panel, it is kept
in the definition of the spatial contiguity matrix and the spatial terms. Overall, we find
only small differences across district samples, with one important exception represented by
District 42 which corresponds to the Kampala District – the capital district. Without this
district, the response is still positive on impact but it drops in magnitude and significance
very rapidly. Kampala gives an important contribution to the persistence of the response
because it is the largest and more modern business and economic hub of the country. We
discuss a similar case in robustness (e) of the paper, which is also the first case of Figure
S14.

In Figures S14-S15 we propose a similar exercise in which we check how the responses
change when we exclude small subsets of neighbor districts (ranging from two to four). The
first of these cases is used for robustness (e) in the paper and discussed there. We analyze ten
representative clusters: besides the Kampala metropolitan region, we consider the cluster
on the West, North and East of that region, subsets of districts on the lake Victoria shore
(notably Jinja, the other large metro area, is Subset 9), one cluster in the far North, one
on the border with Rwanda (South), with Kenya (East), and with Congo (West). All
these figures together satisfactorily confirm the stability of the time-only impulse response
functions to sample variations.

We report next the time-only impulse response function of the P-VAR model under the
alternative identification ordering of the structural shocks in Figures S16-S17. As discussed
in Section 4.2, this identification produces different responses to both ODA and light shocks.
In particular, luminosity does not respond to oda at all, whereas oda respond positively
to light shocks. This type of response posits some serious interpretative difficulty of the
estimated effects.

Finally, we consider the specification of the model that only uses the second-lag of Y as an
instrument. Figure S18 reports the time-space response for this case. The initial part of the
response is smaller than in the baseline and hump-shaped; on the contrary, the responses are
closely comparable in magnitude in the medium and long-run. Although never statistically
significant, the mean response is always positive; and, importantly, the long-run effects of
aid on nightlight are preserved. As known, the precision of the GMM estimation can worsen
with fewer instruments. This is what happens in this case too, as reflected by the slightly
larger confidence intervals in the figure, which further lowers the significance of the IRF.
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S3.2 Additional Exercises and Results

We provide first a short comment on the World Bank data base that we explored as an
alternative to the AidData ODA disbursement. Figure S20 illustrates the time series of ODA
by district, which can be compared to the one we use in Figure S5. The behavior of the
World Bank disbursements noticeably differs from our dataset and this can have interesting
insights for our analysis. The number of “zero” observations is also much higher than in the
AidData dataset though. The zeros are about 75% (they are 20% in our case), and the World
Bank does not make any donation to Uganda in 2011 and 2012 either. Keeping in mind that
the estimation of a panel VAR model requires balanced panel structures ans suitable time
series observations across units, the effect of this large share of zero observations is reflected
by the size of the ODA shock Figure S19, which has a standard deviation more than 4 times
bigger than in our baseline Sp P-VAR, and in the smaller response on impact of nightlights.
However, the mean response of nightlight is positive and quite persistent, and the long-run
effect of ODA shocks is preserved with this dataset as well. The 2-year elasticity, for instance,
is 12%, which is closely comparable to the 16% of the main model.

The second exercise in this section explores the differences between early-impact and
late-impact ODA disbursements. This exercise studies 22 districts of the 36 used in the
main analysis, which receive more than just a couple of early-impact disbursements over the
time sample 1996-2012. Figure S22 illustrates the time series of the early-impact ODA by
district, which can be compared to the one we use in Figure S5. An important characteristic
of early-impact aid in the AidData dataset is that this type of ODA seems to become more
common in the second part of the sample; also for the other districts that receive only a
small number of early-impact disbursements (and are not included in the 22 of this analysis),
early-impact aid usually occurs in the last five years of the sample.

Figure S21 decomposes the time-only response of lights to an overall ODA shock into
a component due to early-impact ODA and the remaining portion that can be attributed
to late-impact aid.4 The top panel of the figure shows the overall response: the impact
response is positive, but the persistence of the IRF is weaker than in the baseline case.
If the identification strategy adopted in the VAR model is plausible, the within-year and
the short-term positive responses of nightlights to ODA should mainly come in response to
shocks to early-impact aid, while late-impact aid shocks should be responsible for the long-
term dynamics of the responses. Figure S21 provides evidence strongly consistent with this
interpretation of the underlying mechanism of the identification strategy.

We find two important differences between the two components of the response. First,
the middle panel illustrates the response of lights to an early-impact ODA shock. The short-
term increase in lights is completely caused by the early-impact response. The effects of
this type of aid are not very persistent, and they even turn negative in the medium-run.
Second, the bottom panel shows the difference between overall and early-impact responses;
this residual conceptually corresponds to the response to late-impact ODA. Late-impact aid
has a smaller effect at the beginning of the response, but it then gain strength in the medium
to long-run between 5 and 10 years since the shock. It actually compensates the negative
portion of the early-impact response, summing up to a null overall effect. The effects of

4An analogous decomposition would be obtained with time-space IRF, we focus then on the simplest
direct case.
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late-impact ODA are always positive and also very persistent.
We conclude this Appendix with some output that indirectly justifies the importance of

using the spatial features of the model. The first in Figure S23 is the IRF of a simple P-VAR
model estimated without any spatial component. In this model, not only the responses to
an ODA shock mix time and space dimension of the transmission mechanism, but they also
are obtained from biased estimates in which the endogenous spatial terms are not correctly
controlled for. On the left side panel, we consider a specification without time fixed effects.
The IRF are positive and significant, not too different in magnitude from our baseline result.
The specification of the model on right side panel includes time effects too; the IRF are still
positive, but smaller and not significant anymore. The use of time effects, which captures
cross-sectional factors, absorbs most of the dynamics of the IRF in the non-spatial model.
These figures are a good comparison point for our results, because the introduction of spatial
features in the model are expected to correct the dynamics of the model, without however
introducing fundamental shifts.

The last observation is based on Figure S25, where the impulse response of lights to an
ODA shock is computed from a model in which only one third (i.e. 12) of the 36 districts of
the main analysis are sampled in such a way that no borders are shared anymore. A P-VAR
is then estimated under the standard specification of the model including the time effects.
These “isolated” districts form a map in which spatial spillovers are strongly weakened
and the transmission of the shocks across neighbors should be muted. Figure S24 shows
the districts included in this example. The spatial VAR we estimate is meant to capture
the spatial spillovers across units, and we would expect similar effects in the two models.
Figure S25 illustrates how shape, magnitude, and significance of the IRF are maintained
in the aspatial model too. A caveat about this last result is that, clearly, multiple maps
can be obtained drawing some non-spatially connected districts from the original set. We
experiment with a few combinations and the results seem fairly stable, even though it is
possible to find cases in which the response is not significant or negative.
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Figure S8: EXCLUDING DISTRICTS 1 – Time-only responses of nightlights to a one stan-
dard deviation shock to ODA excluding one district at the time. Years from the shock on
the x-axis.
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Figure S9: EXCLUDING DISTRICTS 2 – Time-only responses of nightlights to a one stan-
dard deviation shock to ODA excluding one district at the time. Years from the shock on
the x-axis.
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Figure S10: EXCLUDING DISTRICTS 3 – Time-only responses of nightlights to a one
standard deviation shock to ODA excluding one district at the time. Years from the shock
on the x-axis.
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Figure S11: EXCLUDING DISTRICTS 4 – Time-only responses of nightlights to a one
standard deviation shock to ODA excluding one district at the time. Years from the shock
on the x-axis.
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Figure S12: EXCLUDING DISTRICTS 5 – Time-only responses of nightlights to a one
standard deviation shock to ODA excluding one district at the time. Years from the shock
on the x-axis.
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Figure S13: EXCLUDING DISTRICTS 6 – Time-only responses of nightlights to a one
standard deviation shock to ODA excluding one district at the time. Years from the shock
on the x-axis.
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Figure S14: EXCLUDING SUBSET OF DISTRICTS 1 – Time-only responses of nightlights
to a one standard deviation shock to ODA excluding a small subset of neighbor districts at
the time. Years from the shock on the x-axis.
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Figure S15: EXCLUDING SUBSET OF DISTRICTS 2 – Time-only responses of nightlights
to a one standard deviation shock to ODA excluding a small subset of neighbor districts at
the time. Years from the shock on the x-axis.
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Figure S16: Time-only response functions to a one standard deviation shock to aid disburse-
ments. Identification ordering: oda, light. Years from the shock on the x-axis.

Figure S17: Time-only response functions to a one standard deviation shock to lights. Iden-
tification ordering: oda, light. Years from the shock on the x-axis.
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Figure S18: Time-space response of nightlight to a one standard deviation shock to ODA.
Only second-lag instrumentation. Identification ordering: oda, light. Years from the shock
on the x-axis.

Figure S19: World Bank Dataset: Time-space responses functions to a one standard de-
viation shock to lights. Identification ordering: oda, light. Years from the shock on the
x-axis.
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Figure S20: Time series of the variable odai,t by district for the World Bank dataset.
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Figure S21: Early-Impact ODA: Time-only responses to a one standard deviation shock to
total ODA, early-impact ODA only, and the residual response/late-impact ODA. Identifica-
tion ordering: oda, light. Years from the shock on the x-axis.
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Figure S22: Time series of the variable odai,t by district for the early-impact ODA dataset.

Figure S23: Impulse response of nightlight to a one standard deviation shock to ODA. Basic
P-VAR model with no spatial components and baseline specification for GMM estimation.
Time effects included in the right panel only. Identification ordering: oda, light. Years from
the shock on the x-axis.
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Figure S24: Not-connected districts selected for the aspatial analysis - in yellow.

Figure S25: Impulse response of nightlight to a one standard deviation shock to ODA. Basic
P-VAR model with no spatial components and weakened neighborhood links for 12 districts
that do not share any border. Time effects are included. Identification ordering: oda, light.
Years from the shock on the x-axis.
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