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Abstract
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household surveys. We find statistically significant positive and persistent effects of aid
shocks on nighttime luminosity. Mapping nightlights to economic activity, the results
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1 Introduction

The effect of official development aid (ODA) on recipient countries’ economic growth has been
the subject of intense debate in the economic development literature. OECD countries have
spent more than 3 trillion dollars on foreign aid since 1970, with the explicitly stated goals
of economic development, growth, and poverty reduction in recipient countries. However,
little consensus on the effect of aid on growth has been achieved.1 One impediment to
consensus is how to address donors’ endogenous allocation of aid across recipients, which
makes establishing causality between aid and its effects difficult. Recent work by Rajan
and Subramanian (2008), Deaton (2010), Clemens, Radelet, Bhavnani, and Bazzi (2012),
and Galiani, Knack, Xu, and Zou (2017) have argued convincingly that earlier estimates of
ODA effects may be subject to endogeneity bias. The endogeneity issue is also complicated
by the difficulty of clearly disentangling donors’ motivations. Kilby and Dreher (2010),
Dreher, Eichenauer, and Gehring (2014), and Civelli, Horowitz, and Teixeira (2016) argue
that measuring aid impact requires consideration of donors’ motive.2 Similarly, trade or
geopolitical motives (see respectively Berthélemy, 2006; Alesina and Dollar, 2000), could
obfuscate estimates of the ODA effects.

A second major issue obfuscating aid effects is “over-aggregation,” which could mask im-
pacts of local treatments at the national level. Tierney (2011), Dreher and Lohmann (2015),
and others, argue that a subnational level is best for measuring aid effects since multiple
sources of noise accumulate in country level aggregation. Likewise, aggregation in other di-
mensions can obscure the impact of aid on growth. Clemens, Radelet, Bhavnani, and Bazzi
(2012), for example, disaggregate aid into early and long impact varieties, finding signifi-
cant growth effects only with the early impact category. Similarly, aid can be disaggregated
by sector (health, education, irrigation, etc.). Recently, randomized field experiments (see
for example Duflo, Glennerster, and Kremer, 2008) have provided true control treatment
analyses of projects’ local effects. At this level, many projects appear effective.

This gap in the apparent micro and macro effects of aid has been dubbed the micro-
macro paradox (Dreher and Lohmann, 2015; Mosley, 1987). However, most of the micro-
level project studies do not claim a linkage to economic growth or measurement of the full
spillover effects. Yet, the micro and macro effects of aid projects are linked by definition; the
total impact of foreign aid upon growth must be associated with the cumulative effect of the
individual projects upon growth. Consequently, a growing literature focuses on improving
sub-national ODA impact measures.

This paper proposes a subnational ODA impact measurement strategy that simulta-
neously tackles the endogeneity and aggregation problems by combining a spatial panel
vector-autoregressive (Sp P-VAR) model and multiple sources of regional data. We assess
the potential of this strategy, critically discuss its limitations, and provide a demonstration
using regional data from Uganda.

Utilizing a VAR model is attractive in this context because it provides an intuitive way
to impose identifying restrictions that can address the endogeneity. This solution is based

1On this point, see for instance Clemens, Radelet, Bhavnani, and Bazzi (2012). An introduction to the
ODA literature can be found in Temple (2010), Addison and Tarp (2015), and Radelet (2006).

2Civelli, Horowitz, and Teixeira (2016) find evidence that that altruistic motivations, which could help
illuminate reverse causality, explains only a minority of aid transactions.
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on the recursive orthogonalization of the covariance matrix of the estimated residuals of
the VAR model. This approach has been used extensively in the empirical macroeconomics
literature since Sims (1980), but has seen only limited use in the development literature.
The identification of ODA effects with this methodolgy is based on a scheme that isolates
the exogenous shocks to ODA by removing the endogenous component. This is achieved by
jointly modeling ODA and economic activity as a single system and by assuming that struc-
tural innovations to ODA can affect economic activity contemporaneously, while economic
shocks are assumed to have an impact on ODA disbursements only with a temporal lag.
This scheme is natural in this context since the aid disbursement process is lengthy, with
a prior commitment phase that often precedes disbursement by more than a year (Kilby,
2013).

Prior applications of the VAR model to ODA include Lof, Mekasha, and Tarp (2015),
who apply a co-integrated P-VAR to 59 countries, finding that the average long-run response
of income is about 4.5− 5 larger than an initial increase in ODA disbursements. Similarly,
Juselius, Moller, and Tarp (2014) estimate individual countries co-integrated VAR models
for 36 sub-Saharan African countries, finding a positive long-run impact of ODA flows on
the macroeconomy for most countries. Gillanders (2016) estimates a P-VAR model for a
set of sub-Saharan African countries and reports a positive, but small, increase in economic
growth following a fairly substantial aid shock. We follow Lof, Mekasha, and Tarp (2015) in
the identification strategy, but we estimate a fixed-effects panel VAR as in Gillanders (2016).
All of these papers focus on the dynamics of aid at the national level; importantly, our paper
differs from these studies in adopting a sub-national perspective.

The use of disaggregated data brings the advantage of a more direct link between ODA
and growth. However, the combination of the panel structure necessary to estimate the
P-VAR and the regional disaggregation of the data introduces some unavoidable costs and
limitations. First, the P-VAR requires a sufficiently balanced panel structure, with very
limited missing observations and frequently sampled time series of the endogenous variables
(annual observations, at least). Second, while the cross-section dimension helps increase the
number of observations, the dynamic relation between endogenous variables is derived from
the time dimension of the model, which requires a sufficiently large time sample. Third, it
is difficult to obtain sub-national variables at annual frequency from official statistics to use
in the VAR model. Finally, the panel estimation imposes the assumption of homogeneous
effects across units, which implies the measurement of an average effect over the whole
country.

We address these difficulties by combining information from multiple and distinct data
sources. With regard to the main obstacle of data availability for P-VAR estimation in the
sub-national low-income country context, we side-step the problem by utilizing nighttime
luminance (nightlight) data as proxy for economic activity. ODA disbursements at the sub-
national level are available from the AidData Consortium’s geo-coded project mappings.
We then map nightlight to more conventional economic measures, such as consumption
expenditure per household, using geo-coded data from living standard measurement type
surveys conducted by the Uganda Bureau of Statistics. We also rely on other geographic
information system datasets to obtain data about rainfall, population dynamics, land use,
and the surface size of the geographic units.

We choose Ugandan districts as the baseline cross-section units of the analysis in an
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attempt to achieve a sufficiently balanced panel, adopting AidData’s districts geographic
definitions. This yields 35 districts for which both nightlights and ODA disbursements are
observed frequently enough over the sample 1996− 2012. As further discussed in Section 3,
these 35 of Uganda’s 112 districts contains about 50% of Ugandan population, though only
30% of Ugandan territory. The remaining districts show extremely discontinuous luminosity
series, or no light at all. These non-luminous districts together account for only 1.2% of
nightlight and 11% of total aid, on average. However, in order to preserve the information
from these non-luminous districts, we aggregate them to create a synthetic district, which
is added to the panel. We then standardize all observations by the district surface area to
maintain comparability across units. Under the assumption of homogeneity of the effects of
ODA across geographic locations, our strategy of synthetic district creation to preserve the
information in the non-luminous districts has the cost of reducing the benefit of disaggrega-
tion for local effect measurement for that unit.

The use of nightlight satellite data to proxy income, both nationally and sub-nationally,
has grown rapidly in the development literature (Chen and Nordhaus, 2011; Henderson,
Storeygard, and Weil, 2012, 2011; Dreher and Lohmann, 2015). Nightlight data provides a
means to side-step well-known problems associated with traditional income surveys in low-
income countries, such as infrequent surveys, large informal sectors, recipient data-gathering
capacity constraints, and recall errors in the absence of formal income records.

The theoretical causal mechanisms of ODA to nightlight are straightforward. As dis-
cussed in the seminal nightlight papers in the economics literature (see Henderson, Storey-
gard, and Weil, 2012, 2011; Chen and Nordhaus, 2011) nightlight, as measured by satellite,
is highly correlated with income. Since the stated objective of ODA by the donors is income
growth and development,3 the theoretical causal chain from ODA to nightlight contains only
one link. Of course, different types of aid can have different temporal lags and channels
to growth, and different inherent effects on nightlight. For example, a bridge project that
connects two areas with large potential economic synergies may have an immediate (within
year) impact on income growth and nightlight. A “soft” aid project, such as one that im-
proves the quality of primary education, might have multiple channels to growth and light. If
the education project involves school construction or the hiring of new teachers, it may also
generate income growth fairly quickly, assuming an output-gap exists. On the other hand,
the income growth effect via the human capital formation channel will only be realized in
the long-run. Finally, electrification projects could conceivably increase nightlight without
a direct impact on income. We address these concerns by excluding power-supply projects
in a robustness check and by providing some suggestive evidence on the differences in the
responses to early-impact and late-impact aid disbursements.

While many papers have studied the effects of aid at sub-national levels, ours is the first
(to our knowledge) to utilize Sp P-VAR estimation, nightlight data, and geo-located AidData
to explore the impact of aid on sub-national growth.4 Dreher and Lohmann (2015) analyze

3See the mission statement of OECD aid activities (http://www.oecd.org/about/) and note that the aid
in our data set is all associated with OECD-affiliated donors.

4Among the others, examples of studies that have looked at the sub-national impact of aid projects on
various outcomes are: Jablonski (2014) and Briggs (2012) for electoral outcomes, Crost, Felter, and Johnston
(2014) and Findley, Powell, Strandow, and Tanner (2011) for conflict, and Hamilton and Stankwitz (2012)
for deforestation.
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ADM1 and ADM2 regions using data for World Bank projects for a large set of countries and
an interacted instrumental variable approach, but they do not find significant causal effects
of aid on growth. De and Becker (2015) use the AidData geo-coded ODA datasets and find a
positive effect of health and water aid on the disease reduction in Malawi. Similarly, Dionne,
Kramon, and Roberts (2013) study the effectiveness of sector-specific aid in Malawi within
a classic two-stage allocation-impact framework. Our preference for analysis of Uganda is
mostly driven by the reliability of the AidData data for this country, which was part of
the very first wave of AidData releases and has undergone several updating and cleaning
revisions. However, our methodology is highly scalable, with straightforward application to
many low-income countries.

We find that an initial exogenous shock to ODA is associated with a statistically signif-
icantly positive impact response of nightlight, and the positive response persists for more
than ten years. Mapping nightlight to economic activity, we find economic magnitudes in
line with the mildly optimistic estimates usually reported at the national level. The results
of our baseline specification suggest a cumulative ten-year multiplier of ODA on per capita
expenditure, including the spatial component of the transmission channel, between 4 and 5.
Similarly, the estimates of the overall short-run multiplier are around 1.5 for the response to
a temporary shock. Finally, we quantify the rebounding effect due to the spatial structure
of the model to account for about 20 to 50% of the total effect of ODA shocks.

The remainder of the paper is organized as follows. Section 2 introduces the empirical
strategy and discuss some of its limitations. Section 3 describes the data. Section 4 presents
the empirical results. Section 5 concludes and discusses extensions.

2 Empirical Strategy

The empirical strategy of this paper relies on the use of a spatial panel vector-autoregressive
model (Sp P-VAR) for the analysis of sub-national effects of foreign aid on economic growth.
This approach addresses two main concerns in the aid effectiveness literature. First, the
VAR model allows us to address the endogeneity of aid disbursements by imposing some re-
strictions on the dynamics of the model based on intuitive economic considerations. Second,
analysis at the sub-national level can help address the difficulties in the measurement of aid
effectiveness due to over-aggregation of aid types with different characteristics.

The VAR is a linear model that requires suitably balanced panel structure for estimation.
Although the cross-section dimension helpfully increases the number of observations for
estimation, the dynamic relation between the endogenous variables of the model can only
be inferred from a sufficiently large time sample. Specifically, the low frequency of survey
data (e.g., LSMSs or expenditure surveys) in many low-income countries prevents us from
directly estimating a Sp P-VAR model of sub-national economic growth using such data.
Therefore, we follow a two-step procedure in order to exploit the identification advantages
of the VAR as well as the advantages from ODA disaggregation. We first estimate a Sp
P-VAR in nightlights and ODA with data at district level, exploiting the characteristic of
nighlights data of being available at annual frequency for virtually any level of geographic
disaggregation. We then map the effects of ODA via lights to economic activity by adapting
the predictive equation of Henderson, Storeygard, and Weil (2012) to our context.
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2.1 Specification of the Spatial P-VAR model

We start with the reduced-form representation of a fixed-effects Sp P-VAR model in equation
(1), in which we include a time autoregressive lag, a spatial autoregressive component, and
possible exogenous explanatory variables. This model can be generalized to higher orders of
autoregressive lags on both the time and space dimension, but for sake of clarity we simply
focus on the specification used in the analysis:

Yi,t = A1Yi,t−1 + SȲi,t +BXi,t + ui + ei,t. (1)

In this equation, Yi,t is the vector of the n endogenous variables of the model, in which
i = 1 . . . N indicates the cross-sectional units of the panel and t = 1 . . . T the time dimension;
Ȳi,t corresponds to the spatial autoregressive lag of the endogenous vector (fully defined
below); and Xi,t is the vector of exogenous variables. The vectors of panel fixed-effects and
idiosyncratic errors are ui and ei,t respectively, while time fixed-effects are embedded in the
model by subtracting from each variable its cross-sectional mean before estimation.5 Finally,
A1, S, and B are (n× n) coefficient matrices.

In our application, cross-section units correspond to Ugandan districts (including the
synthetic district), while t is expressed in years. The endogenous vector includes the logs of
the ratio of nightlight and aid disbursements to the district surface area, lighti,t and odai,t
respectively

Yi,t =

[
odai,t
lighti,t

]
. (2)

The choice of normalizing variables by district area follows the luminosity literature (see
for example Henderson, Storeygard, and Weil, 2012, 2011; Chen and Nordhaus, 2011; Dreher
and Lohmann, 2015). This is standard when we want to approximate income dynamics with
luminosity for two reasons. First, light growth occurs both at the extensive and intensive
margin: that is, dark areas transitioning to light as well as the nightlight signal becoming
more intense. Since the measurement of light by the DSMP satellites is top-coded, significant
upper bound truncation in urban areas is not unusual. Where truncation occurs, light growth
can only occur at the land area extensive margin. A second reason to prefer measures per
land-unit area is the public goods nature of nightlight in many settings. For example, in a
typical low-income country, the nightlight emissions and capacity are likely insensitive to the
number of members in the household. The model is specified in log-levels and it estimates
the elasticity of the response of luminosity to aid disbursements.

The spatial lag for district i is defined as a weighted average of the values of its neighbor
districts, Ȳi,t =

∑
j 6=iwi,jYj,t. The neighbors of a district are those that share a common

border with it. The weights wi,j for district i are defined by the row-normalized entries of
the contiguity matrix of the district map. Entry (i, j) of the contiguity matrix is either 1
if districts i and j are neighbors or 0 if j is not a neighbor of i, with a diagonal of zeros
by construction. We collect the spatial weights together in matrix W . The spatial lags of

5This demeaning of the data is equivalent to including period dummies in the exogenous vector X, but
it has the advantage of restraining the number of parameters to estimate. The number of parameters would
increase in the size of the time sample, and the advantage is particularly significant in small-size models like
ours.
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any other exogenous variable can be constructed following the same approach. This is very
helpful because spatial instruments derived from exogenous variables enhance the reliability
of the estimation of a dynamic model with spatial components. As an exogenous variable
we include in Xi,t the log of total annual rainfall at district level.6,7

2.2 Estimation strategy

The Sp P-VAR in (1) is estimated over the sample 1996 − 2012 using a modified version
of the Love-Zicchino Stata package (Love and Zicchino, 2006), with the modification being
necessary to especially accommodate the spatial autoregressive component. The estimation
methodology is an extension to the multi-equation case of the dynamic panel GMM approach
of Arellano and Bond (1991a). This approach is suitable for small time dimension and large
cross-section samples, and it assumes that the idiosyncratic error terms have finite moments
and in particular E(ei,t) = 0, E(ei,te

′
i,t) = Σ (constant covariance matrix across units),

E(e′i,tei,s) = 0 for t 6= s (no serial correlation over time), and E(e′i,tej,t) = 0 for i 6= j (no
cross-section dependence).

A within estimator that removes the fixed-effects in a dynamic panel setup such as (1)
introduces an additional bias in the estimation of the coefficient matrix, due to the correlation
between the transformed residuals and the transformed vector of endogenous variables. As
normally done in the context of dynamic panels, instrumentation with lags of Yi is used to
deal with this problem. Since the estimation procedure removes the fixed-effects using a
forward orthogonal transformation, the first lag of Yi would be a suitable instrument if the
residuals are not autocorrelated. However, the estimation procedure can be straightforwardly
adapted to cases with short-term autocorrelation by distancing the lag of the instruments.
Since we found some mild serial correlation of the first order in the residuals of our estimated
models, the results we report are based on the use of the second and third-lags of Yi which
provides one over-identifying condition for the GMM estimation.8

The GMM estimates of the model coefficients are, however, robust to arbitrary patterns
of heteroskedasticity and autocorrelation within individuals when the residuals covariance is
modeled clustering by district and estimated by two-step GMM (see Roodman, 2009, for a
discussion at the panel level).9

6Although other definitions of the weighting scheme are possible, using spatial matrices based on border
contiguity is probably the most common approach in spatial analysis.

7Details regarding the construction of variables, data sources, and the full definition of the cross-sectional
districts are provided in Section 3 and Appendix A.

8The relatively small size of our panel suggests particular caution with the proliferation of the instrument.
Hence, a parsimonious instrument selection is preferable for the baseline model in the analysis. Increasing the
number of over-identifying GMM conditions seems to quickly lead to over-fitting problems as reflected by the
implausibly high p-values with which the the Hansen’s test for the validity of over-identifying conditions is
passed (Roodman, 2009). Also, notice that the removal of fixed-effects is independent of the ODA endogeneity
issue and the instrumentation does not aim to solve this.

9The estimation of the residuals covariance matrix used to compute the impulse responses must reflect
these assumptions. The original Love-Zicchino package works under the assumption of homoskedasticity
only; our modification introduces clustering and within district autocorrelation in the computation of the
covariance. However, we maintain the assumption of no cross-section dependence of the residuals in the
computation of the structural shocks of the model, as further discussed in this section and, in part, justified
by our analysis in Section 4.
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On the contrary, cross-section dependence has to be explicitly accounted for. One relevant
source of this dependence with contiguous geographic units is clearly spatial autocorrelation.
The use of the spatial lags attenuates this concern. These spatial terms are not exogenous by
construction because they are correlated with the current innovations to Yi,t, but they can be
handled in the GMM framework adopting the same instrumenting approach as for the VAR
vector of endogenous variables. A suitable set of instruments includes the time-lags of the
spatial lag itself, as well as the spatial lags of the exogenous variable. Further cross-section
dependence due to common factors that affect all units simultaneously is controlled for by
also including time fixed-effects in the estimation.10

A last, but important caveat, in the use of this type of pooled VAR model is that it relies
on the assumption of homogeneous slopes across units. This choice is in part dictated by the
short time sample of the data, which prevents any serious attempt of fitting heterogeneous
models in which the parameters vary by district and/or by time period. However, due to
the regional scale of the study, we believe it is fair to assume only moderate socio-economic
heterogeneity across districts. Similarly, due to the limited degrees of freedom in the time
dimension, we cannot reasonably test for poolability. In principle, however, this could be
done with a test for parameter restrictions like the Wald test or the LR test where the
unconstrained model allows for unit specific slopes and the restricted model imposes the
common slope coefficients.11 A somewhat easier approach would be to test for poolability
at a individual equation level, and in this case a test based on the Mean Group estimator of
Pesaran and Smith (1995) would be more feasible.

2.3 Structural form and impulse response analysis

Let us now consider the structural counterpart of model (1) in which the contemporaneous
effects between the endogenous variables of district i are explicitly represented by

Yi,t = Γ0Yi,t + Γ1Yi,t−1 + S0Ȳi,t +B0Xi,t + ηi + vi,t (3)

where our attention is especially focused on vi,t, the vector of orthogonal structural residuals
of the model, while Γ0, Γ1, S0, and B0 are (n× n) matrices of structural coefficients, and ηi
is the vector of fixed-effects. The reduced-form (1) is obtained from (3) by solving it for Yi,t,
after defining A0 = (In − Γ0)

−1 and setting A1 = A0Γ1, S = A0S0, B = A0B0, ui = A0ηi,
and ei,t = A0vi,t.

A0, hence, also defines the relation between structural and reduced-form residuals of the
model. The VAR approach assumes that the reduced-form residuals are a linear combination

10Bouayad-Agha, Tutpin, and Védrine (2013) and Brady (2011) use the GMM instrumentation framework
to estimate spatial effects in a spatial dynamic panel model. We extend their approach to the P-VAR
model. Alternative methods for the estimation of spatial P-VAR models have been proposed in the recent
literature. Beenstock and Felsenstein (2007) adopt an IV approach and a bias correction solution to the
incidental parameter problem; Márquez, Ramajo, and Hewings (2015) add the spatial terms to the vector of
endogenous variables of the VAR system and estimate individual models for each region; Badinger, Muller,
and Tondl (2004) spatially filter their data before applying the GMM to a dynamic panel model. These are
all valid alternative options, but we prefer to remain as close as possible to the well-known Arellano-Bond
framework.

11Although these tests have known asymptotic distributions, their small-sample performance has to be
usually explored empirically.
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of the unobservable orthogonal structural innovations. As in the non-spatial case, knowledge
of vi,t is necessary to give a structural interpretation to the impulse response functions (IRF)
of the variables of the VAR to the shocks of the model. Even though it is not possible to
fully recover the structural innovations from the reduced-form residuals, since equation (1)
is structurally under-identified, the structural shocks can be reconstructed by means of an
orthogonalization of the estimated vector of residuals.

Econometrically, the orthogonalization is achieved through a factorization of the esti-
mated covariance matrix of the residuals Σ. However, since the factorization is not unique,
it is necessary to adopt some selection criteria to choose a specific one. In practice, given
the linear setup of the VAR model, a convenient approach to selecting an orthogonalizing
scheme is to impose some restrictions on the contemporaneous relations between structural
and reduced-form innovations in A0, providing an economic justification in support of the
restrictions. One of the most common of these schemes is known as the Cholesky identifica-
tion approach because it exploits the Cholesky decomposition to factorize Σ; the Cholesky
factor is then matched to A0.

We can express the covariance matrix of ei,t in function of its lower-triangular Cholesky
factor D as Σ = DD′, where D−1 is the factorizing matrix that orthogonalizes the covariance
matrix of ei,t. From ei,t = A0vi,t and normalizing to one the variance of the structural shocks
so that E(vi,tv

′
i,t) = In, it is easy to see the Cholesky identification scheme imposes a set of

zero-restrictions on the off-diagonal elements of A0 (suitably re-ordered) to uniquely identify
A0 as a lower-triangular factorization matrix. With a vector of two endogenous variables as
here, only one off-diagonal element exists and, hence, only one restriction is necessary. We
postpone the economic discussion of the identifying assumptions to Section 2.4.

Given this structural identification of the innovations, model (1) allows us to compute
a first type of IRF of the variables of a district to shocks to variables in the same district,
in which time-only impulse responses are considered. Let Λj,h indicate the vector of the n
responses, then

Λj,h = Ah1A0λj (4)

where j = 1 . . . n indicates the structural impulse with which the system is shocked, λj is a
(n × 1) selection vector equal 1 at position j and zero elsewhere, and h tracks the horizon
of the response function. The assumption of homogeneity across units implies a common
shape of the responses across districts, whereas in a model with region-specific coefficients
the IRF must be indexed by i. Although the estimates of A1 and A0 are obtained correctly
controlling for the spatial structure of the model, Λj,h corresponds to the time-only impulse
response because it does not embed the space dynamics in the response to the shocks. In
this respect, it must be interpreted as the simple and direct effect of a shock in a district on
the endogenous variables of that same district.

In addition to the direct time IRF, however, it is interesting to also study the time-space
IRF of the model, in which spatial spillovers allow the shocks in one district to affect the
dynamics of the variables in other districts and the following rebounding effects are explicitly
taken into account in computing the IRF. To this end, we rewrite the model by stacking (1)
over the cross-sections

Yt = A1Yt−1 + SWYt + BXt + u+ et (5)

where Yt is the (nN ×1) vector of endogenous variables for all the districts stacked by i, and
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Xt, u, and et are analogously defined. Furthermore, the coefficient matrices are obtained
from those in (1) as follows: A1 = (IN⊗A1), S = (IN⊗S), W = (W⊗In), and B = (IN⊗B).
By defining A0 = (IN ⊗ A0), the stacked reduced-form residuals can also be expressed as
et = A0vt, which clearly highlights how the district level relation between structural and
reduced-form residuals is preserved with the stacked vectors by the block-diagonal structure
of A0. In particular, the covariance matrix of the stacked reduced-form residuals is a block-
diagonal matrix as well, and can be written as E(ete

′
t) = (IN ⊗ Σ), and the identification of

A0 would directly apply to each block of A0.
We next solve equation (5) for Yt in order to be able to compute the time-space IRF

Yt = Ã1Yt−1 + B̃Xt + ũ+ M0A0vt (6)

where M0 = (InN −SW)−1, Ã1 = M0A1, B̃ = M0B, ũ = M0u, and the residuals are explicitly
expressed in function of the structural innovations vt. The matrix M0 embeds the effects
of the spatial component on both the dynamics of the model, represented by Ã1, and the
impact of the structural shocks on the system, since M0 pre-multiplies A0.

The structural identification of the time-space IRF relies on the contemporaneous restric-
tions of the Cholesky approach for A0, on one side, and the instrumental variable identifica-
tion of S in the GMM estimation of the model, on the other.12 By merging information from
the within district ordering of the endogenous variables and from the spatial structure of the
model, we follow the spirit of the identification strategy proposed by Di Giacinto (2010). In
our case, however, the identification is streamlined by the separate estimation of S, which
allows us to keep M0 and A0 independent. On the contrary, Di Giacinto (2010) estimates
the reduced-form in (6) and imposes a set of restrictions on the joint term Ã0 = M0A0.

We can now compute the time-space IRF, indicated by the (nN × 1) vector Λ̃l,h

Λ̃l,h = Ãh
1M0A0λ̃l (7)

where λ̃l is the selection vector of the stacked shocks, with l = 1 . . . nN now. Any shock in
any district can, in principle, have an impact effect on any variable in any district since M0

does not have a block-diagonal structure. Similarly, the transmission of the impulses across
districts is then compounded by the spatial effects incorporated in Ã1. Furthermore, the
responses of the same variable in two different districts to the same shock in the respective
district will not unfold in the same manner due to the different weighting schemes and
neighbors of each district – reflected by the differences in the rows of W .

It is clear that the number of impulse responses rapidly increases, especially for large
cross sections, making it unfeasible to report all of them. For this reason, we compute and
report the cross-section average of the time-space responses of the variables of a district
to a shock in that district, which can be directly compared to the corresponding time-only
responses given by (4) in order to assess the average effect of the spatial component of the
model. These average IRF will be denoted by Λ̄j,h, where j = 1 . . . n indicates the impulse
variable as in the time-only IRF. Formally, Λ̄j,h is computed as

Λ̄j,h =
1

N

N∑
k=1

L̃kΛ̃j+n(k−1),h (8)

12Since the weighting matrix W is given, knowing S is sufficient to fully determine M0.
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where L̃k is an (n× nN) selection matrix with the n vectors λ̃′1+n(k−1) . . . λ̃
′
nk as rows.

2.4 Solution to endogeneity of aid allocation

The local disaggregation of ODA likely mitigates many of the issues that contribute to the
non-random allocation of ODA, such as the strategic interplay between donor and recipient
at national level or the enormous heterogeneity across recipient countries. With respect to
recipient heterogeneity, the concern is attenuated as estimation is across regions of more uni-
form climatic, institutional, and socio-economic structure. Similarly, the capability of Ugan-
dan sub-national governments to implement effective strategic play with multiple OECD
donor countries is also likely quite limited when compared to nation-states. Nevertheless,
addressing the endogeneity of ODA disbursements is also a priority at the sub-national level.

In a VAR framework, a solution to the endogeneity problem is readily available through
the identification of exogenous structural innovations to ODA that can be employed to
correctly measure the effects of ODA on nightlights. Following the work of Sims (1980) in the
empirical macroeconomics literature, the VAR is one of the most commonly used empirical
tools and the choice of the identification restrictions is typically justified by an intuitive
transmission mechanism, rather than an exact structural economic theory. With only two
endogenous variables (n = 2) in the Sp P-VAR model, this narrative based justification
is easily accomplished. In fact, there are only two possible cases to achieve identification
of structural shocks: either we assume that ODA responds to a nightlight shock with one
temporal lag or, vice-versa, that luminosity responds to an ODA shock with a lag.

We follow Lof, Mekasha, and Tarp (2015) and assume that nightlight shocks can impact
ODA disbursements only with a temporal lag, allowing then nighlights to respond to ODA
shocks within the period. The rationale for this identification strategy is that a local ODA
disbursement could impact economic local activity via either the demand or supply side
relatively quickly (within a year), while the response mechanism of ODA to an exogenous
increase in nightlight is typically lengthy. This transmission mechanism is consistent with
the complex process that culminates in aid allocation decisions and disbursements, as docu-
mented by Kilby (2013), for instance. In Section 4, and in Section S3 of the online Appendix,
we discuss the importance of this assumption for the results since they would differ under the
alternative identification scheme. However, we find it difficult to find a simple and plausible
economic justification of this alternative transmission mechanism.

It should be noted this identification strategy only imposes a zero-restriction on the
element of A0 corresponding to the response of aid to nightlight, but it does not force any
specific behavior on the response of lights to ODA shocks per se. This restriction, as any
other assumption, needs to be justified and economically reasonable, whereas the response
of nightlights to ODA is allowed to be freely estimated from the data. In principle, this
response could be null or even negative and, in this respect, our identification strategy takes
a fairly neutral stance on the effect of our main interest.

Once the structural shocks are identified, the effects of aid on luminosity can be esti-
mated by computing the impulse response of nightlights to an initial shock to ODA. The
relative magnitude of the shock and the response will represent the elasticity of luminosity
to ODA that is at the heart of our analysis. The response functions also provide a dynamic
representation of the transmission channel of transitory shocks in the short and long-run.
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Other tools are also used to assess the transmission channel of ODA shocks; in particular,
we analyze the long-run cumulative responses of lights to a one-time shock, the response to
permanent shocks, and variance decomposition of forecast errors.

One important limitation of the VAR model is that, although the structural identification
correctly reveals the dynamic interaction of the endogenous vector of variables in the sys-
tem, the structural mechanism is still identified conditional on the model specification itself.
Omitting other relevant endogenous variables or not controlling for relevant confounding fac-
tors might affect the dynamics of the impulse response functions and the magnitude of the
identified responses. This issue has no easy solution in our context because of the difficulty
of obtaining reliable sub-national data at annual frequency for a low-income country.

These concerns are mitigated in part through robustness checks and the use of fixed
effects. Fixed-effects in the P-VAR model eliminates the effects of district level time invariant
characteristics. These can include differences in governance, cultural, climatic, and socio-
economic factors that vary across district, but not over time. Furthermore, we also include
time-effects in the model by time-demeaning the variables, which allows us to control for
common time-varying factors such as business cycles or political trends at the national level.
Similarly, we use as a control variable rainfall at the district level, which is a meaningful factor
explaining growth differentials in emerging economies, such as Uganda, where subsistence
farming is still very important. Finally, we re-estimate the P-VAR with ODA and nightlights
standardized by population, in order to control for an important factor that can influence
both light emission and ODA allocation.

2.5 Linking economic activity to luminosity

After the impulse response of lights to ODA is estimated with the P-VAR, it remains to
connect this impact to a more standard measure of economic activity. For this we rely
on the predictive stage of Henderson, Storeygard, and Weil (2012)’s approach, in which a
statistical measure of economic activity (official GDP, typically) is regressed on lights.13 We
adapt this methodology in a straightforward manner to explore the link between the growth
in household real expenditure at the district level and the change in luminosity for the same
set of cross-sectional units used in the P-VAR analysis. The predictive equation simply reads

xi,t = ψlighti,t + εi,t, (9)

where (εi,t) are i.i.d. random variables, E(εi,t) = 0 and E(ε′i,tεi,t) = σ2I. Equation (9) is
written in log-linear version as a two-period panel between 1999 and 2009. As in the P-
VAR vector (2), lighti,t is the log of the ratio of nightlight to the district surface area for
district i in period t. We measure xi,t with either the log of the average household weekly
consumption expenditure or, for robustness, the average household monthly expenditure in
non-durable goods. Henderson, Storeygard, and Weil (2012) measure xi,t at the country level

13Henderson, Storeygard, and Weil (2012)’s methodology uses the estimates from this stage to ultimately
infer the unobservable true growth of the underlying economic activity from an optimal combination of
multiple signals correlated with it, such as GDP and lights. Since the purpose of our paper is to primarily
document a transmission channel from ODA to household expenditure, we only focus on the first stage of
their methodology.
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Figure 1: Distribution of the ODA project in Uganda since 1991. Data provided by Aid-
Data. Solid gray indicates the 35 districts included in the sample used in this study. White
corresponds to the districts in the synthetic region.

using the log of national GDP instead; our estimates of ψ̂ are very much consistent with
theirs. The model is estimated using panel fixed-effects and robust standard errors. In line
with the use of spatial components in the Sp P-VAR model, we control for potential cross-
section dependence due to spatial factors by applying the Eigenvector spatial filter to the
data before estimating the model (see, for instance, Griffith, 2003; Griffith and Peres-Neto,
2006, for a discussion of this filtering technique). Comparing the estimates of model 9 with
and without pre-filtering the data we find a quite small effect of the spatial components in
this predictive equation.

3 Data Description

Panel Structure – The panel used for the estimation of the P-VAR model covers the sample
1996 − 2012, T = 17, and includes a cross-section of N = 36 sub-national regions. Details
regarding the synthetic district can be found in Appendix A. Figure 1 shows the geographic
location of the cross-section units of the analysis on the Ugandan map. The districts that
are part of the synthetic district are white colored in the figure; the other 35 districts are
illustrated by the solid gray areas instead.

ODA Data – Data for the aid projects is drawn from AidData’s Uganda Geo-coded
Dataset (Release IV). This dataset maps 420 projects over the sample 1981−2013 distributed
across the 112 Ugandan districts. The geographic precision of the disbursements for each
project is reported on a scale from 1 to 8, where 1 indicates the knowledge of the exact
geographic coordinates of the disbursement and 8 corresponds to projects at the central
government level.14 We focus on the spatial aid-growth nexus by filtering the projects to
precision codes 1 − 3, which correspond to ADM2 or lower administrative levels. This
reduces the distance between where aid is spent and the region where it may produce positive

14Note that the precision scale skips the classification code 7 for unspecified reasons.
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Figure 2: Disbursements classification by geo-location precision and by sector of activity.

economic effects. Figure 1 illustrates the spatial distribution of projects with precision 1− 3
over three time intervals. The number of precision 1 to 3 projects and the territory covered
by them increase over time, especially in the last years of the sample.

In considering the sample 1996 − 2012 for P-VAR estimation, note that before 1996
only two districts received aid for precision 1 − 3 projects: the capital metropolitan area
Kampala and, for a couple of years, the adjacent district of Wakiso, which includes some
capital suburbs. We do not include these observations in the panel for two reasons. First,
having only two cross-section units for so many periods is not desirable for our empirical
model.15 Second, even though recorded with high precision codes, these are projects close
to the seat of government at a time when government institutions were often the primary
beneficiaries of aid. With respect to our goal of local identification of the effect of aid, these
projects likely match the criteria only weakly.16 We also exclude 2013 from the sample due
to some anomalous disbursements in two districts of the Northern region of the country that
suddenly increase a hundred fold. These districts are part of the synthetic unit; the total
disbursements of the synthetic district became five times bigger than those of the lit districts

15Furthermore, luminosity data is available only from 1992.
16For instance, the description of one of the projects mentions general government and civil society as

main purpose. Two other projects are for the construction of the stadium and the international airport in
Wakiso.
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in 2013, whereas they are usually ten times smaller. This change makes this last observation
behave like an outlier.

In addition to the geo-location of individual projects, the AidData dataset includes the
annual disbursement flows for each project. Total district ODA is computed as the log of
the ratio between the sum of aid disbursements for precision 1 − 3 projects in a district
(measured in real 2005 US dollar) and the district area measured in squared kilometers.
Figure 2 decomposes the ODA disbursements by precision code and sector of activity for
the sample 1996 − 2012. This is a useful illustration of the implications of our geographic
disaggregation strategy for the ODA disbursements. Two observations are worth noting.
First, precision codes 1−3 account for roughly half of the ODA disbursements. The purpose
of our empirical approach is to separate the possible effects of locally circumscribed projects
on local economies from the impact of a large number of projects that disburse funds at
higher administrative levels. As noted, aid to the national government and ministries likely
have a less direct connection to local growth than a project like a bridge or road. Second,
the decomposition by sector also reveals a quite different structure between regional and
national disbursements. Local disbursements exhibit a higher share of projects in education
and agriculture, water sanitation, infrastructure and transportation, and health. On the
contrary, general budget support - the main category for precision codes 6 and 8, are typically
less focused geographically.

Figure 2 also shows that the share of projects related to energy generation and energy
supply, which can inflate lights emission without an increase in economic activity, represents
only about 5% of the precision 1 − 3 disbursements. In one of our robustness checks, we
repeat the analysis after removing these projects and obtain similar results. In principle, the
information about project sector can be used to more accurately distinguish between projects
which might affect economic growth more in the short-run from projects with a longer run
impact (as proposed by Clemens, Radelet, Bhavnani, and Bazzi, 2012). This classification
can be exploited in our study to shed some more light on the structural identification of the
short-run effects of aid on luminosity. Unfortunately, the AidData dataset does not allow
us to exactly replicate the Clemens, Radelet, Bhavnani, and Bazzi (2012)’s methodology
because only 3-digit purpose codes are available. Moreover, at the precision levels used in
our analysis, only a third of the projects are classified as early impact, leaving us with a quite
uneven time and space distribution over districts. However, we can assemble a smaller set of
22 districts for which this distinction is feasible and conduct some analysis of the different
implications of these two types of aid on the dynamics of the system. The results of this
exercise, broadly consistent with the underlying scope of this classification of ODA, are in
support of the structural identification scheme adopted in this paper.17

Finally, we also run a robustness check using aid project data from a second data base
reporting disbursements exclusively for the World Bank as a single donor. This data base
records aid projects financed by the International Bank for Reconstruction and Development
(IBRD) and the International Development Agency (IDA), and it provides some advantages
in terms of geographic precision and coverage over time (see the online Appendix, Section
3.2.)

17The details of the construction of this dataset are given in Appendix A. The results of the analysis are
discussed in the empirical section of the paper below and Section 3.2 of the online Appendix.
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Figure 3: Comparison between land coverage and night luminosity. On the left side, the
night lights are reported for on an area of about 30,000 Km2 around the capital Kampala,
for 2010. The red dots indicate ODA projects locations. The intensity of lights is represented
in a black to white scale. On the right side, land coverage for the same area and the same
year is shown. The color legend of the different uses is: red for urban coverage, dark green
for forests, light green for agriculture and pasture.

Nightlight Data – Nightlight data is obtained from the Defense Meteorological Satellite
Program (DMSP). These images are annual composites processed prior to release. Since
data for distinct years can be provided by different satellites, an inter-calibration is applied
to harmonize nightlight values across across years-satellites (see Appendix). As noted, per-
sistent nightlight from this source is not detectable in all of Uganda’s 112 districts over the
DMSP sample, 1992− 2012. Figure 3 illustrates AidData project mapping overlaid with the
2010 nightlight image (on the left side panel) and land coverage (on the right hand panel)
for a small region around Kampala, the capital of Uganda. In the land-cover image, red
is used to indicate urbanized areas, while light green corresponds to rural and agricultural
land.18 Not surprisingly, nightlight signals are usually associated with greater urbanization.
On the contrary, some rural regions do not produce any detectable luminosity signal for time
intervals of several years. In any case, note that ODA disbursements, the red dots, are found
in urban areas as well as rural areas with little detectable nightlight. For this reason, the
construction of the synthetic region is important to avoid the complete loss of the informa-
tion coming from the darker regions. Overall, 7 of the 35 individual districts have continuous
detectable nightlight signals and received aid every year since 1996; the large majority of
them receive ODA every year after 2000. Also the synthetic district exhibits positive ODA
and nightlight signal for the entire sample.

Household Surveys – We construct the measures of economic activity at the regional
level necessary to estimate the predictive stage of Henderson, Storeygard, and Weil (2012)
using the Uganda National Household Surveys (UNHS) administrated in 1999 and 2009.19

We present estimates based on both the district average household weekly consumption ex-
penditure and the average household monthly expenditure in non-durable goods. Household

18The full legend of the land-cover colors is explained in the caption of Figure 3. This image is an authors’
elaboration of (NASA) Landsat 7 multi-spectral satellite data.

19These surveys are similar in design to the World Bank Living Standard Measurement Surveys (LSMSs).
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income data is also available from the UNHS, but given the well-known problems with income
data in such contexts (e.g., high levels of informal activity, resistance to disclosing income,
and recall error in the absence of written records), we believe that change in expenditure
would be a better indicator of economic growth. Moreover, income and expenditure should
be highly correlated in this poor environment with relatively little saving. Since aid dis-
bursements may impact household durable expenditures as well, our impact estimates could
be interpreted as conservative with respect to total expenditure growth, and by extension,
to income growth.

Following Henderson, Storeygard, and Weil (2012), we then use the logs of the average
expenditure in real 2005 US dollar terms by district as the dependent variable in the fixed-
effects long-run model (9), and the log of lights per squared kilometer described above for
the independent variable. Paralleling the panel of the main P-VAR estimation, we use the
35 districts and the synthetic district as cross-sectional units in the estimation of (9).

Rainfall – We start from the monthly series of total terrestrial precipitation (or rainfall)
provided by the Climate Hazards Group (CHG) (see Funk, Peterson, Landsfeld, Pedreros,
Verdin, Shukla, Husak, Rowland, Harrison, Hoell, and Michaelsen, 2015), in collaboration
with the U.S. Agency for International Development (USAID) and the National Oceanic
and Atmospheric Administration (NOAA). These series report data on a resolution grid of
.05× .05 degree latitude/longitude. We compute the total annual rainfall by pixel and then
aggregate it by district. The variable in the model is then computed as the log of the total
annual height of rainfall per district.

Population – In a robustness check, we also utilize data for population series at district
level to construct alternative normalizations of ODA and nightlights instead of normaliz-
ing by districts areas. We precisely describe the population data and its manipulation in
Appendix A.

4 Empirical Results

As discussed above, our methodology consists of two linked estimation stages. In the first
stage we estimate the responses of nightlights to an ODA shock in the Sp P-VAR. In the
second stage we map the responses of luminosity to changes in local expenditure in the spirit
of Henderson, Storeygard, and Weil (2012).

4.1 P-VAR Specification Assessment

It is worth noting again that the baseline specification of model (1) used in this Section is
a Sp P-VAR(1,1) in the logs of ODA and nightlights normalized by districts’ areas, which
includes first-order time and spatial autoregressive lags. The choice of the lag specification
is necessarily dictated by the relatively small sample size T = 17. However, the standard
lag-selection tests do not suggest that higher order temporal lags are required.

In a panel with units geographically close to each other, cross-district spatial economic
links can be significant. As a first step, then, we check for the presence of spatial autocor-
relation in our two endogenous variables, light and oda. The Moran’s I index, one of the
most common indicators of spatial autocorrelation, for the two variables is reported in Table
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S1 and discussed in the online Appendix. For conciseness, the fully detailed results and
discussion are presented in the online Appendix. Luminosity exhibits a significantly positive
autocorrelation in each year of the sample, while aid disbursements do not seem to have any
significant autocorrelation pattern. Since the two variables are endogenously intertwined in
the model, the use of spatial components in the empirical analysis is desirable.

As discussed in Section 2.2, we estimate a model with a spatial autoregressive term,
equivalent to what is known as SAR in the literature. This is a feasible choice in the context
of the GMM estimation of a dynamic model, since the new term can be handled by extending
the same instrumentation approach of the GMM. Although some spatial autocorrelation is
still found in some instances in the residuals of the ODA equation of the preferred baseline
specification (see Table S2), alternative options would entail explicitly modeling the errors
of the Sp P-VAR as spatially correlated terms. However, to the best of our knowledge,
established estimation techniques that embed spatial errors model (SEM) into the P-VAR
framework are not available yet. At least in part, the measurement of the spatial autocorre-
lation of the residuals might also be affected by cross-sectional dependence due to common
determinants across districts. We can control for these common factors by using time fixed
effects though, and we move to this aspect of the analysis next.

A key assumption of the P-VAR model is no cross-sectional dependence in the residuals.
A Pesaran’s CD test (Pesaran, 2004) for cross section dependence in panel data conducted
on the residuals of each equation of the baseline model largely rejects the null hypothesis
of no-dependence.20 A full characterization of cross section dependence would rely on rich
parameterizations of the covariance structure of the errors or some type of factor augmented
model with unit-specific coefficients. In any case, given the limited size of the panel, especially
in the time dimension, there would not be sufficient degrees of freedom to justify these
approaches in this case.

In a an alternative and more parsimonious approach, Sarafidis, Yamagata, and Robertson
(2009) devised a simple procedure to test whether including time dummies, or equivalently
transforming the data in deviations from time averages as we do, is sufficient to eliminate any
cross-section dependence in a dynamic panel model. We exploit this result to provide some
evidence which supports the use of time fixed effects in the Sp P-VAR as an effective way of
mitigating the cross-sectional dependence problem. We show in the online Appendix (Table
S3 and related discussion) that replicating each equation of the Sp P-VAR as a separate
dynamic panel estimated by GMM, the Sarafidis, Yamagata, and Robertson (2009)’s test
does not reject the null of no residual dependence for either equation of the Sp P-VAR model.

In order to use the estimated model to compute the impulse response functions in Sec-
tion 4.2, the Sp P-VAR must satisfy the invertibility conditions. The standard invertibility
condition for the time-only IRF is simply based on the eigenvalues of matrix A1 in equation
(1). The baseline model satisfies this condition having two stable roots largely inside the
unit circle, with the larger root of .77. The invertibility condition on the time dimension is
then strongly satisfied, and possible non-stationarity of the vector of endogenous variables
does not seem to be of any concern with our dataset. Similarly, we also need to confirm the
model is invertible in the time-space dimension, in order to be able to use the spatial lags in
the computation of the time-space IRF. This more general invertibility condition is based on

20Results reported in Section S1.2 of the online Appendix.
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the roots of matrix Ã1 in equation (6) instead. This condition entails 72 possibly imaginary
eigenvalues, and we find the maximum modulus of these eigenvalues is .85. The time-space
invertibility conditions is largely satisfied as well.

The invertibility condition is necessary for the computation of IRF, but it can be verified
only conditional on the output of the GMM estimation. The validity of the Arellano-Bond
estimator used to estimate the reduced-form Sp P-VAR model also requires the endogenous
variables of the model to be stationary processes. As discussed by Blundell and Bond (1998),
if the endogenous variables are close to a random walk, then the difference GMM performs
poorly since the original variables are weak instruments for the transformed variables. We
assess this point by testing for a panel unit root in the two endogenous variables of the
system.21

We use first the IPS test proposed by Im, Pesaran, and Shin (2003), a very popular
so-called first generation panel unit root test that does not account for cross-sectional de-
pendence, but allows for heterogeneity across panels. In spite of the spatial correlation
documented above, the Pesaran CD test (Pesaran, 2004) does not reject the null of (generic)
cross-section independence for either ODA or nightlights (see Section S1.3 of the online
Appendix). Baltagi, Bresson, and Pirotte (2005) have shown the reliability of this test is
preserved for moderate levels of spatial autocorrelation as well, which fairly corresponds to
our situation where the Moran’s I index does not exceeds .275. The IPS test is also used,
for instance, by Beenstock and Felsenstein (2007) in a context similar to ours. We can hence
apply this test with some confidence to our variables as well. The IPS test strongly rejects
the null hypothesis of an integrated process with drift for both variables.

We further explore the stationarity condition with the Bai and Ng (2004)’s PANIC and
the related Reese and Westerlund (2016)’s PANICCA tests, second generation tests that
explicitly allow for cross-sectional correlation by decomposing the individual series of the
panel into a deterministic component, a common component, and an idiosyncratic error
term, the last two of which are then separately tested for stationarity. Stationary processes
for both common and idiosyncratic components imply overall stationarity of the original
variable itself. These tests reject the null hypothesis of integrated processes with drift for
both components, consistently across different specifications of the test for both ODA and
nightlights. We provide a more exhaustive illustration of these results in Section S1.3 of the
online Appendix (see Tables S5 and S6).

As a last point, we check for (time) autocorrelation in the residuals in order to correctly
inform the selection of the lagged instruments. We assess autocorrelation in two ways.
First, we show some simple evidence that a specification of the model with only one-lag
instrument, the most basic just-identified model, likely violates the GMM assumptions since
it produces autocorrelated residuals. We fit a P-VAR(1) with the residuals of this model and
find significant autoregressive coefficients, especially for the ODA equation. These results
are reported in Table S4 of the online Appendix. However, we think this basic procedure is
only plausible to check for low-order autocorrelation in our context.

As a second step, then, we return to the dynamic panel regressions applied individually to
each equation of the baseline specification of model (1) used for the cross-section dependence
tests. These dynamic panels are estimated by an analogous GMM procedure (see Roodman,

21We thank an anonymous referee for pointing out the importance of these unit root tests.
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2009) and allow us to test for higher-order autocorrelations using the Arellano-Bond test
(Arellano and Bond, 1991b). In line with the estimates at the previous point, we find that
serial autocorrelation of the first order is present in the ODA equation, but not for lights.
Furthermore, we detect autocorrelation of the fourth-order for the ODA residuals (see the
result for AR(5) in column c of Tables S3).

Based on these results, our selection of instruments starts with the second-lag and ex-
cludes the fourth and higher lags. To gain precision in the estimation, our final choice for
the baseline specification of the model is to use the second and third lags of both Y and Ȳ
as instruments along with the spatial lag of rainfall. The estimates of the long-run effects
of aid are robust to a second-lag-only specification though. Finally, the Hansen’s J statistic
for the baseline Sp P-VAR model does not reject the validity of the over-identifying GMM
restrictions with large p-values (.376 in Table A1).22

4.2 Impulse Response Functions

We begin with a presentation of the results for our preferred baseline specifications of the
P-VAR model; we then provide a set of robustness checks at the end of this Section and in
the online Appendix.

Figure 4 illustrates the impulse response functions of the model over a 10 year horizon
in response to a one standard deviation temporary shock to ODA disbursements for the
time-only responses, along with their 95% confidence intervals (in gray) computed by Monte
Carlo simulation. On the left-hand side of the Figure, we can see the disbursement shock
is large and relatively persistent (the response is significantly positive for about five years).
Similarly, reported on the right-hand side, the response of luminosity is on average positive
and persistent for a long horizon, but significant only for the first two to three years after the
shock. Even though the response of nightlights is smaller and rapidly decays, it generates a
non-trivial impact on luminosity, at least in the short-run.

Figure 5 compares the time-only and time-space responses of nightlights to the same
shock to ODA as in 4. The effects of the spatial spillovers on the transmission mechanism
of the shocks are quite evident. The response is reinforced by the spatial feedback from
neighbor districts; it gains an additional 15% effect in the first year, and the contribution of
the spatial component compounds over time (for instance, the effect is doubled five years after
the shock). As a consequence, the impact of an ODA shock is more persistent and significant
for a longer period in the time-space response. The impact shock to log-aid is around .61
and translates into a contemporaneous increase of about .12 units of log-luminosity. The
response of log-luminosity after three years is at about .05 and .08 units for the time-only

22The Hansen’s J statistics include the over-identifying conditions from the spatial components as well
as the spatial term of rainfall. The Sp P-VAR model with lag instruments between 2 and 4 passes the
over-identification test, but the p-value of the statistic drops below 20%. Relying again on the equation-wise
dynamic panel models, we find evidence that the drop is driven by a significantly lower quality of the Y−lag
instruments once the fourth lag is added to the instrument set; the J statistic is then prevented from falling
further down by the other sub-set of exogenous instruments (see column c of Table S3). Another indication
of the endogeneity of the fourth lag is obtained from the impulse response analysis where the model with
first-lag instrumentation, clearly endogenous, and models including the fourth lag have similar responses
which substantially differ from those of the baseline specification. We further investigate these points in
Figure S1 of the online Appendix.
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and time-space responses respectively. The time-space responses correspond to an elasticity
at impact of 20% and a 2−year elasticity of about 16.3%.

Figure 6 documents the time-only responses of the two variables of the model to a one
standard deviation temporary shock to nightlights. On the right panel, we see the lights
shock has a magnitude and a significance pattern comparable to the ODA shock, but with
a slightly larger persistence. The response of ODA, reported on the left, is significantly
negative and U-shaped. This response function is quite relevant for the interpretation and
corroboration of the identification ordering of the structural shocks.

The response suggests that the effect of luminosity shocks on ODA disbursements takes
a few periods to propagate and reaches is highest strength only three years after the shock.
In this identification scheme we constrain the response to be zero on impact, but after
that the response is free to follow a negative path which is very consistent with the common
interpretation of the endogeneity given to the response of aid allocation to economic activity.
That is, more aid flows to places with lower income. In the alternative identification ordering,
which is explored in the online Appendix, the ODA response is positive on impact for the
initial period, and then turns negative (see Figure S17). This response is strongly at odds
with that common interpretation of the aid endogeneity issue.

We further explore the underlying mechanism of our identification assumptions in Section
S3.2 of the online Appendix, where we conduct a simple exercise to analyze the different
effects of early-impact and late-impact ODA shocks. An important caveat in interpreting
the results of this exercise is that their reliability is limited by the characteristics of the data
we can construct, and the reduced statistically significance of the IRF we find. Although
rigorous, the exercise hence provides some suggestive, but not fully conclusive, evidence. The
main goal of this analysis is to show that the within period and short-term positive response
of nightlights to ODA mainly comes in response to shocks to early-impact aid, while late-
impact aid is responsible for the long-term dynamics of the responses. This decomposition
of the total effects of ODA shocks would also confirm the empirical validity of the structural
identification strategy we adopted in the paper, besides its theoretical justification. The
analysis in Figure S21 in the online Appendix definitely support this conclusion.

Figure 7 focuses on the long-run effect of the temporary ODA shock, illustrating the cu-
mulative response of luminosity for both the time-only and time-space cases. The cumulative
impact on nightlights is large and statistically quite significant for the first five years after the
shock for the time-only response. The response remains (on average) consistently positive
for a long horizon, but the large confidence interval makes it not significant after five years.
As expected from the previous results, the reinforcing effect of the spatial spillovers increases
the magnitude of the time-space cumulative response, but more importantly it enhances the
persistence and significance of the path of the response, which remains strongly significant
up to the ten years horizon. Numerically, this time-space cumulative response is .73 at ten
years. We can compute the cumulative elasticity of nightlight with respect to ODA by com-
paring the cumulative response to the corresponding cumulative change in ODA, which is
1.57 ten years after the shock. We find a substantial ten-year cumulative elasticity of about
46.5% (with an equivalent elasticity for the time-only case of 28%).

Another possible way to assess the long-run effects of ODA on lights is to compute the
response of lights to a permanent shift in ODA. This can be easily done, for instance, in the
simple case of the time-only dimension using the estimates of the coefficients in A0 and A1.
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Figure 4: Time-only response functions to a one standard deviation shock to aid disburse-
ments. Identification ordering: light, oda. Years from the shock on the x-axis.

(a) Correct answers. (b) Time.

Figure 5: Comparison of the the time-only and time-space response functions of lights to
a one standard deviation shock to aid disbursements. Identification ordering: light, oda.
Years from the shock on the x-axis.
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Figure 6: Time-only response functions to a one standard deviation shock to lights. Identi-
fication ordering: light, oda. Years from the shock on the x-axis.

(a) Correct answers. (b) Time.

Figure 7: Comparison of the the time-only and time-space cumulative response of lights to
a one standard deviation shock to disbursements. Identification ordering: light, oda. Years
from the shock on the x-axis.
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Horizon: years

1 2 3 4 5 6 7 8 9 10

ODA on lights 5.8 5.6 5.5 5.4 5.4 5.3 5.3 5.3 5.3 5.3
Lights on ODA 0 2 5.4 8.8 11.7 13.9 15.5 16.5 17.2 17.7

Table 1: Share of the variance of lights and ODA explained by the shocks to the reciprocal
variable. The decomposition is computed for the baseline identification ordering of the
variables. Values expressed in percentage points.

The nightlights equation in structural form, under our baseline structural identification and
omitting some of the terms for convenience of presentation, can be re-written as:

lighti,t = α1lighti,t−1 + β0odai,t + β1odai,t−1 + ...+ v2,i,t (10)

where α1, β0, and β1 are combinations of the coefficients in A0 and A1, and v2,i,t is the
structural shock for the light equation. The long-run elasticity to a permanent shift in ODA
is computed as the ratio β0+β1

1−α1
, and it is estimated to be 29.2%.23

As a last point, we also look at the variance decomposition in only the time dimension
of the forecast errors of nighlights and aid disbursements at different time horizons to assess
the relative contribution of the ODA shocks to the total variance of lights. Similarly, we can
examine the contribution of lights shocks to the variance of ODA. This result is reported in
Table 1 for the baseline orthogonalization of the shock structure. The ODA shock explains a
relatively small, but stable share of the volatility of lights, ranging between 5 and 6%. Lights
shocks, on the contrary, explain a more sizable and increasing share of the ODA volatility,
ranging from just 2% at one year to 18% at ten years.

These results provide another interesting comparison between the two alternative struc-
tural identification orderings. In the baseline case, the majority of the variance of observed
luminosity is determined by its own shocks, but the contribution of aid determines non-
negligible fluctuations as well. The same variance decomposition under the alternative or-
dering shows that aid does not contribute at all to the fluctuations of nightlights, which can
be then modeled as an independent autoregressive process.

We conclude this Section with a set of six robustness checks of the effects on the IRF of
changing the specification of the model and the way data is treated. Figure 8 illustrates the
time-space responses of nightlights to an ODA shock for these cases, with the exception of
panel (e) in which the time-only response is considered. These main checks are a starting
point to discuss a broader set of robustness exercises, which for sake of brevity are fully
described in the online Appendix, Section S3.

The first two checks, in panels (a) and (b), modify the time sample of the estimation and
document the stability of the estimation results over time. Panel (a) illustrates the time-
space impulse response function for the latest part of the sample, after dropping the first four
observations; panel (b) looks at the earlier years, dropping the the last four observations.
In panel (a) the mean response is always positive, but the effects are smaller than in the

23Point estimates of the P-VAR coefficients and of the Cholesky decomposition matrix are reported in
Appendix B.
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baseline and not statistically significant. The trajectory of the response is hump-shaped,
with a peak after about three years from the shock. In panel (b) the mean response is still
positive, but smaller, and with much higher long-run persistence than in the baseline. The
confidence intervals are also larger in both cases due to the smaller estimation precision.

These responses show that the results are relatively sensitive to the time sample, which
is not surprising given that only 17 years are covered by the full sample. Interestingly, the
final portion of the sample seems to contribute relatively more to the short-run dynamics
of the response, while the earlier part of the sample contributes more to the medium and
long-term persistence of the effects. This difference is consistent with the evidence about the
effects of early-impact aid discussed above. Early-impact aid is more concentrated in the
last few years of our sample and, as seen in Section S3.2 of the Appendix, better explains the
short-run dynamics of the responses of lights. ODA in the late part of the sample contains
a relatively larger share of aid in the early-impact category.

The results in these first two panels are closely related to the suggestion of an anonymous
referee to use an alternative dataset of geocoded aid projects from the World Bank for a
robustness check. Panel (c) illustrates this case. The World Bank dataset provides a more
balanced coverage of aid flows over time on the one hand, but it is limited to a single donor
on the other hand.24 It allows us to check, then, whether the baseline results are dominated
by the coverage of the AidData dataset. The AidData dataset has improved in precision
in the most recent years of the sample, but it could potentially be skewed towards projects
with specific characteristics. The panel shows this does not seem to be the case, since we
find very similar time-space IRF also with the alternative data.

The fourth check, in panel (d), excludes aid disbursements from projects that are related
to energy generation and power supply network enhancement. These projects could increase
lights emission without a direct effect on the real economic activity. We notice some inter-
esting differences. The time-space response is smaller on impact than in the baseline case.
Since energy related projects are a typical component of early-impact ODA, this drop in
the response would be consistent with the short-run effects of this type of aid. However,
the confidence interval gets very wide, very rapidly and the statistical significance of the
response is largely undermined.

In the fifth check, we explore the robustness of the results to changes in the composition
of the cross-section units. Specifically, panel (e) drops the three neighbor districts of the
metropolitan region of the capital of Uganda, Kampala. Dropping this set of districts, the
time-only response is still positive on impact, but it is characterized by a more rapid decay
and smaller long-run effects. A very similar result is obtained by excluding from the sample
just the Kampala district. Kampala is the main city of the country, it is the center of a large
urban area, and it has a more developed economic and business activity. It is not surprising
that aid could be relatively more effective in this type of environment. Interestingly, the
contribution of these districts is particularly relevant for the persistence of the light response.

This fifth robustness check is only an example of a very thorough exercise in which we
systematically drop, one at the time, each district and small subsets of contiguous districts

24The World Bank dataset has some important differences, especially in relation to the application to
the Sp P-VAR model, that should be noted. In particular, a much larger share of periods with no ODA
disbursements than in the AidData data. We discuss the characteristics of the dataset in Section S3.2 of the
online Appendix.
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(a) Sample 2000:2012 (b) Sample 1996:2008

(c) World Bank dataset (d) No power-supply projects

(e) Without capital districts (f) Per-capita variables

Figure 8: Robustness checks – Responses of nightlights to a one standard deviation shock
to ODA. Years from the shock on the x-axis.
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to check for the influence of possible outliers. The time-only responses of lights seem to
remain very stable across the sets of districts. Since the time-space IRF are reported as
the average of responses with spatial spillovers across units, they are not very sensitive to
the exclusion of small subsets of districts. For this reason, this robustness check is simply
conducted for the time-only IRF. The full set of impulse responses is documented in Section
S3 of the Appendix.

Finally, panel (f) considers variables normalized by district population rather than district
area. The time-space response remains significantly positive and persistent, and it follows
a very similar trajectory. However, the key difference using this data treatment is that
the ODA shocks are now larger, reducing the elasticity of the response to 14% on impact.
Our preference for data normalized by district area is based on the evidence by Henderson,
Storeygard, and Weil (2012), who show that nightlights per area is a strong predictor of
economic activity. Lights normalized by district surface are also more tightly connected
to household expenditure than lights per capita in our sub-national context, and are less
distorted by the upper-bound light truncation. This truncation will limit the sensitivity of
light to population growth in dense urban areas. Normalization by area, on the other hand,
will capture light growth at the land extensive margin.25

4.3 Link to Economic Activity

We now turn to the second stage of the analysis that maps the ODA shocks to a traditional
measure of economic activity. As discussed previously, given the type of data available from
the household surveys, we believe household expenditure is the best measure of economic
activity at the district level in this context. Many alternative measures of economic impact
and time horizons are possible so these estimates might be considered baseline exercises.
Table 2 below reports the ten-year elasticities of two average household expenditure measures
to district luminosity (these are the ψ̂, in equation 9).

Column (a) is the elasticity of household weekly consumption expenditure to lights and
Column (b) is the elasticity of average household monthly expenditure in non-durable goods
to lights. We find highly significant estimates in both cases, with a larger elasticity for the
expenditure in non-durable goods (39.2% compared to 20.8% for the weekly consumption
expenditure). The magnitude of both the effects is also strongly consistent with the .32
estimated by Henderson, Storeygard, and Weil (2012) for the analogous regression at country
level.26

Using Table 2 estimates of ψ̂ and the baseline Sp P-VAR specification, we can estimate
the cumulative effects of an aid shock on household expenditure. The ten-year cumulative
elasticity between ODA disbursements and nightlights found in Section 4.2 was 46.5%. This

25In Figure S18 of the online Appendix, we also check for the just-identified specification with the second-
lag of Y used as an instrument. We find that, even though the short-run response is smaller than in the
baseline, the responses are closely comparable in magnitude in the medium and long-run, preserving the
long-run effects of aid on nightlight. See Section S3.1 of the online Appendix too.

26They utilize country-level GDP rather than district-level household expenditure. A diagnostic assess-
ment of the residuals of these two models is left for the online Appendix, Section S2. Overall, the model
assumptions are satisfied, with the exception of heteroskedasticity. We correct the standard errors accord-
ingly in the regression.
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weekly monthly
expend. expend.

(a) (b)

log(lights/area) .208 .392
(.046)*** (.104)***

F.E. Y Y
Obs. 72 72
B/W R2 .30 .50

Table 2: Estimates of the ten-year elasticity of household expenditure to district luminosity
from model (9). Column (a): dependent variable is the log of the average real household
weekly consumption expenditure; Column (b): dependent variable is the log of the real
average household monthly expenditure in non-durable goods. Standard errors indicated in
parenthesis, with significance levels of respectively 1%, 5%, and 10% indicated by ∗∗∗ , ∗∗ ,
and ∗. Survey years: 1999 and 2009.

indicates that a district-level cumulative increase in aid disbursements of 1% over ten years
would generate an increase of about 18.2 basis points in the district average cumulative
household expenditure in non-durable goods ten years after the shock. This increase is 9.6
basis points if we measure economic activity through average household consumption expen-
diture instead. Similarly, a temporary shock to ODA of 1% would cause an average response
for the first two years after the shock in the average household non-durable expenditure of
6.4 basis points, and 3.4 points in the average household consumption expenditure.

As an alternative perspective on the economic magnitude of these effects, we can convert
them into average dollar per-capita terms. For example, in 2009 for which we have both
household expenditure and ODA disbursement data, the average 1% increase in per-capita
real dollars ODA disbursements across the Ugandan districts corresponds to 4.5 cents per-
capita. We find that a temporary positive shock to aid of this magnitude returns an increase
of 7.75 cents in per-capita expenditure in non-durable goods and of 6.35 cents in per-capita
consumption expenditure on average for the first two years.27 This is equivalent to a short-
run multiplier around 1.4− 1.7. Naturally, the effects of ODA strengthen in the long-run if
we consider cumulative estimates. A cumulative increase of per-capita ODA equivalent to 7
cents over ten years produces a cumulative increase in non-durable expenditure of almost 35
cents and an increase in consumption expenditure of 28 cents. The cumulative multiplier is
between 4 and 5 then. It is worth noting that these results are strongly in line with those

27The 1% increase in ODA in per-capita terms is computed from the corresponding increase in land-unit
terms, which is the unit of measure used to compute the compounded elasticities from the empirical exercise.
Since districts’ areas are constant, the increase in ODA would fully come from a change in disbursements.
The increase in ODA is then divided by the 2009 population size of each district to obtain the per-capita
value. For the dollar responses of the expenditure measures, we start from the district average households
expenditures in the same year. The real average household expenditure in non-durable goods is $605; since
the average household size is around 5 people, the per-capita expenditure in non-durable goods is equal
to $121. The corresponding values for the average annual consumption expenditure are $935 and $187
respectively. We finally apply the compounded elasticities to these averages.
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reported by Lof, Mekasha, and Tarp (2015), who find an average multiplier effects around
4.5 for a panel of 59 countries.

5 Conclusion

The low-income country recipients of US and other OECD donor of foreign aid contain over
4 billion people, the majority of the global population. Yet the large literature attempting
to measure aid impact at the country level using traditional data sources and estimation
techniques has produced no consensus on the effects of aid on growth. This research shifts
the analysis of aid impact from the country to the sub-national level, combines traditional
data sources with remote sensing (satellite) data, and employs an estimation technique that
accounts for the endogenous allocation of aid across the sub-national (district) units.

Our regional estimation strategy entails two-stages. In stage one we use a spatial panel
vector-autoregressive model to generate the impulse response of luminosity to aid shocks.
We find a positive, statistically significant, and persistent response to the shock. The second
stage uses a traditional regression approach to generate coefficients estimates to map the
impulse response to traditional local economic variables. Connecting the two stages indicates
that the shock impact on expenditure is small, but non-negligible. We find the multiplier
effect of ODA on household expenditure ranges between 4 and 5 in the long-run horizon.

Our approach is highly scalable across location, sector, and outcomes, and it holds
promise as a flexible tool for policy analysis. The most immediate opportunity is application
of our methodology to the other countries with geo-coded AidData (over fifteen countries
at this writing). Examples of scalability beyond location include using this approach to
measure local effects of alternative “treatments” (to official foreign aid) that can be tracked
over time and for which the autoregressive methodology would be suitable. For example, a
straightforward application would be to measure the local impacts of aid disbursements from
large private foundations and NGO. Examples of scalability beyond economic growth could
include the impact of a treatment upon investment decisions, health conditions, governance,
and the environment. Additionally, the impact of specific categories of aid that we would
not expect to have strong light-generating consequences could also be captured by satellite
signals other than nightlights. For instance, agricultural land-use-change associated with
irrigation or farmers education projects could be measured using infrared and near-infrared
satellite data. This approach is the subject of ongoing research.
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Appendix

A Dataset Construction Details

This Appendix provides more details about the data collection and treatments following the
outline of Section 3.

Panel Structure – The cross-section of the panel in the study includes 36 regions. Of these
regions, 35 administrative districts (ADM2 level units), while the last one is a synthetic region
obtained from the aggregation of all the other Ugandan districts. The geographic boundaries
of the districts are obtained from the world administrative divisions layer provided by ESRI-
ArcGIS. We adopt the most recent definition of districts established in 2010, also shared by
the AidData dataset, which consists of 112 districts. The synthetic district aggregates 77
districts with low (or no) night luminescence corresponding to about 70% of the Ugandan
territory, and 48% of the population on average over this sample.

Although the introduction of the synthetic district may seem an asymmetric treatment of
the data at first sight, our choice is justified by two goals. On one hand, it satisfies the need
of a sufficiently balanced structure of the panel to support the P-VAR estimation. Both
nightlights and ODA disbursements are regularly observed for the main 35 districts, but
not for the others. Taken individually, these districts have extremely sporadic luminosity
and ODA series that make them unsuitable for the VAR model. On the other hand, the
aggregation corrects for these problems and allows us to preserve the information coming
from this set of districts without arbitrarily dropping any observation.

Overall, the synthetic district receives a less than proportional share of total aid, on
average only around 11%, and produces a very small fraction of the country nightlights,
never bigger than 4%. The reason for this weaker luminosity emission can be found in the
smaller urbanization share in the synthetic region. As illustrated by Figure 3, there is a
close correspondence between urban areas and luminosity. The districts in the synthetic
region are primarily rural, with an urban share about 50 times smaller than that in the lit
districts.28 We maintain the comparability across units by standardizing the observations by
the surface area of the respective district (or population in some robustness checks). Under
the assumption of homogeneity of the effects of ODA across geographic locations implicitly
imposed by the P-VAR approach, the use of the synthetic district weakens the benefit of the
ODA geographic disaggregation strategy for this unit.

ODA Data – The ODA data frequently shows multiple disbursements made under the
same project id in multiple locations, not necessarily in the same district or in the same year.
In such cases, there is not sufficient information to assign all disbursements of a project to a
single district and the records show equal aid disbursement for each of the multiple locations
of a project. In these cases, we proportionally re-distribute the disbursements over the
recipient districts of a project based on population size. Also, if a district does not receive
any aid in one period, we substitute the observation with a small value, .0001, before taking
the log. This occurs in about 20% of the observations.

28The share of urbanized land in 2014 was .8% in the lit districts and .014% in the no-light districts.
These shares are computed using the dataset provided by Pesaresi, Huadong, Blaes, Ehrlich, Ferri, Gueguen,
Halkia, Kemper, Lu, Marin-Herrera, Ouzounis, Scavazzon, and Zanchetta (2013) - Beta release.
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Early and Late ODA – Clemens, Radelet, Bhavnani, and Bazzi (2012) classify aid projects
in two categories, “early-impact” and “late-impact” aid, depending on the time horizon at
which they might plausibly affect economic growth. In their words: “Early-impact aid
[. . . ] might plausibly affect growth within a few years after it is disbursed, such as aid for
road construction. [. . . ] Late-impact aid is that which finances activities that are likely to
take many years or even decades to affect growth, such as vaccination campaigns or basic
education.” Their classification is based on the 5-digit purpose codes of the projects, which
are not provided by AidData for its geo-coded disbursements; AidData provides only 3-digit
codes, which correspond to a coarser classification. We then map the 5-digit classification
into the 3-digit purpose codes by assigning codes to the short-term impact group whenever
the majority of the 5-digit codes stemming from a 3-digit code are classified as “early-impact”
by Clemens, Radelet, Bhavnani, and Bazzi (2012).

Their original classification is available from the technical note accompanying their paper.
This translates into the following list of purpose codes for the projects found in the precision
levels 1-3 of the AidData dataset: 160 - Other social infrastructures and services , 210 -
Transport and storage, 220 - Communications, 230 - Energy generation and supply, 311 -
Agriculture, 510 - General Budget Support. This additional filtering has a significant impact
on the availability of of projects in two ways. First, the number of projects drops by two
thirds with respect to the dataset in use in the main analysis. Second, the distribution of
early-impact aid is not uniform across the 36 districts we consider anymore. Five districts
do not receive any short-term impact aid, for example, while early-impact disbursements
are concentrated in the very last years of the sample for an other handful of them. As a
consequence, we can only define a smaller panel of 22 districts suitable for the analysis of
the effects of early-impact aid. Even though these differences clearly limit the comparability
with the main analysis, this exercise gives us the opportunity to obtain, at least, suggestive
results to support the identification strategy of the structural shocks used in the main VAR
model of the paper. Further details about this panel data are left for the online Appendix,
along with a deeper discussion of these results.

World Bank Aid Data – We also run robustness checks using another aid project data
base, reporting disbursements exclusively from the World Bank. This data base records all
the aid projects from 1995 to 2014 financed by two World Bank lines: International Bank
for Reconstruction and Development (IBRD) and International Development Agency (IDA).
As in the aid data base used in this paper, each project can be identified by location with
precision codes going from 1 to 8, as well as by sector and disbursement date. The main
difference between the two datasets is that the World Bank database is smaller because
it refers to one donor only; however, it has some advantages with respect to geographic
precision, geographic coverage within the donor, homogeneity of classification over time. For
example, the World Bank data bases has 73% of the projects classified with high precision
codes 1, 2 or 3 (projects are located within 25 km around latitude/longitude given by the
project or ADM2 centroid location) whereas other AidData aid datasets have, on average,
just 60%. This is an interesting trade-off to explore, and we do that in Section 4.2 of the
paper and in the online Appendix.

Nightlight Data – In order to harmonize luminosity data from different satellites, we apply
the inter-calibration adjustment parameters provided by Elvidge, Hsu, Baugh, and Ghosh
(2014). As is done for ODA, the luminosity variable in the Sp P-VAR is then constructed
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as the log of the sum of the luminosity index for all the pixels within a district boundaries
standardized by the district area (measured in squared kilometers). In a very limited number
of cases (7 periods in 4 districts) there is no luminosity in one year, even though these periods
are preceded and followed by very clear nightlight signals. Since the DMSP satellites are
meant to record the luminosity emission from stable human-based sources of light, we believe
it is more plausible to interpret the lack of observations in these years as missing observations
rather than actual zero values. Therefore, we substitute these observations with an spline
piecewise polynomial interpolation. The choice of using these substitutions bears a small
impact on the final results. We find nearly identical effects when we add a small value to
the zero observations instead of applying the interpolation.

Household Surveys – The UNHS is designed to be representative at national and macro-
region level; however, geographic coordinates are available for each surveyed household. We
use this information to assign the households to the correct districts based on the 2010 ad-
ministrative definition of districts. We then compute the district expenditure as the weighted
average of the expenditures reported by the households within a district, using the survey
multipliers to construct district rescaled weighting schemes. The surveys basically adopt
a stratified two-stage sampling design, in which Enumeration Areas (EA) are first sampled
with probability proportional to their population relative to the national aggregate, and then
households are randomly sampled within each Enumeration Area. On average, we had at
least 60-80 observations per district, although a few of the 35 districts are not sampled in
either year of the surveys. Since the EA are sub-units of the districts, the sampling pro-
cedure does not necessarily cover every district, neither can it guarantee the full coverage
of a district included in the survey. For each district in our panel, we identify all the EA
belonging to that district and use the (national) multipliers of the EA to construct the rel-
ative within-district weights for the households in each EA. Since the multipliers designed
to reflect the representativeness of the EA at national level, this approach is only an ap-
proximation, in particular when a small portion of the the EA of a district are sampled.
However, the approach is quite satisfactory for the synthetic region and it is arguably more
effective than simply treating the households sampled within a district as i.i.d. observations,
for example. As a robustness check, we estimate (9) also under this second scenario finding
still very significant, but 30% smaller, estimates of ψ.

Rainfall – This variable was constructed using version 2.0 of the Climate Hazards Group
InfraRed Precipitation (CHIRPS) dataset for global terrestrial precipitations (Funk, Peter-
son, Landsfeld, Pedreros, Verdin, Shukla, Husak, Rowland, Harrison, Hoell, and Michaelsen,
2015). The data is downloaded from the Climate Hazards Group website.29 The dataset
compiles information from different sources, in particular blending data directly obtained
from in-locu stations and from interpolated gauge satellite datasets. The resolution of the
dataset is relatively coarser than the rest of the dataset we utilize due to the specific diffi-
culties of data collection for precipitation that rely on terrestrial weather stations. However,
this is a relatively minor issue when considering geographic areas as large as districts and
aggregation over annual periods, which are less sensitive to temporary variations of the
geographic distribution of rainfall.

Population Series – The geographic distribution of population at relatively high resolu-

29At the web address http://chg.geog.ucsb.edu/index.html
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tion (about 100 squared meters) is obtained from the Socioeconomic Data and Application
Center (SEDAC) at 5−year frequency for the period 1995 − 2005. These are raster images
of world population, harmonized with national and sub-national administrative population
counts and United Nation country statistics, which can be aggregated at the desired geo-
graphic unit consistently over time. The raster images are part of the two Gridded Popula-
tion of the World series provided by SEDAC, the GPWv3 and the GPWFE (CIESIN-CIAT,
2005; CIESIN-FAO-CIAT, 2005). The low frequency of observations requires a further ma-
nipulation to construct annual time series: we interpolate the 5-year data with an spline
piecewise polynomial. Though the interpolation returns annual observations, this remains a
quite noisy measure of population change, with only a mechanically predicted variability over
time. However, since population dynamics are relatively slow and predictable, we can utilize
it with some confidence to standardize the other variables of the model, but not directly as
a control variable.
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B Point Estimates from Baseline P-VAR

odai,t lighti,t
(a) (b)

odai,t−1 .666 -.007
(.051)*** (.035)

lighti,t−1 -.212 .753
(.085)** (.070)***

raini,t 1.33 .816
(.653)** (.498)

lighti,t -.155 -.302
(.236) (.117)***

odai,t -.243 -.239
(.187) (.109)**

F.E. Y
Obs. 468
N. of Panels 36
Instruments L2/3, rain
Hansen J-test χ2(10) = 10.76 [.376]

Table A1: Estimates of the fixed-effects P-VAR(1) model in equation (1). Cross-section
units are the Ugandan districts (including the synthetic district); t is expressed in years.
The endogenous variables are the logs of the ratio of nightlight to the district surface area,
lighti,t, and the ratio of aid disbursements to the district surface area, odai,t. Spatial terms
odai,t and lighti,t are constructed based on the share-border contiguity matrix. Exogenous
variable is raini,t, the log of total annual rainfall per district. Column (a): ODA equation;
Column (b): nightlight equation. Instruments are the time-lagged endogenous variables and
spatial terms, and the spatial-lag of the exogenous variable. Standard errors indicated in
parenthesis, with significance levels of respectively 1%, 5%, and 10% indicated by ∗∗∗ , ∗∗ ,
and ∗. P-values in brackets for the Hansen’s test. Sample years: 1996 and 2012.
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light oda

light .492 0

oda .122 .611

Table A2: Estimates of the Cholesky factorization matrix. Variables order: light, oda.
Column variable responds to row variable.
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