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Using the model, we recover the optimal weight of the GDP in the compos-
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1 Introduction

The seminal paper of Henderson et al. (2012) (HSW, henceforth) introduced a sta-

tistical framework to use changes in nightlights as a useful proxy for economic

activity. HSW use this framework to obtain two main results. First, they show

that nightlights can be used to directly predict GDP growth. This is useful, for

instance, at sub- or supra-national level when official GDP measures are not avail-

able. A large body of literature has exploited this result for a variety of empirical

applications.1

Second, they propose a model that combines GDP — intended as a noisy

signal of true economic growth — with nightlights as a second signal to improve

estimates of unobservable true income growth. This is particularly useful when of-

ficial GDP measures exist, but there are reasons to believe they are unreliable. Their

two-signal model of true income growth, however, has an important shortcoming:

it needs to identify four structural parameters with only three sample moments

from observed data. HSW solve this by assuming a value for the signal-to-noise

ratio of the GDP signal.

The need for underlying conventional income data and the lack of a straight-

forward identification strategy have restricted the empirical applications of this

model. Nevertheless, estimating true income is, in principle, more relevant than

just estimating GDP, and a fully identified model can constitute a useful bench-

mark for other approaches that aim to measure economic activity. To this end, this

paper proposes a novel solution that overcomes the underidentification problem

of the HSW framework by augmenting their model with a third signal.

Our results are threefold. First, we theoretically demonstrate that a three-

signal version of the HSW model is fully identified. The third signal increases the

number of parameters to be estimated; however, it also provides three additional

1See, among the others, Storeygard (2016); Michalopoulos and Papaioannou (2013a,b); Alesina
et al. (2016); Dreher and Lohmann (2015); Civelli et al. (2018); Hodler and Raschky (2014).
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moment conditions, namely its variance and the covariances with the two original

signals (official GDP and nightlights). The six moment conditions fully identify the

six model parameters. We also characterize the necessary properties of this third

signal.

Second, we show how urban land cover data can be a suitable third sig-

nal. Globally, urban land cover data have become increasingly available for ex-

tended periods and at different frequencies. They have been shown to meaning-

fully provide information about economic growth beyond night luminosity, espe-

cially in more agriculture-intensive regions and at the subnational level (see, for

instance, Goldblatt et al., 2019; Keola et al., 2015; Wu et al., 2013). We show its

potential as a third signal by estimating the predictive GDP growth regression on

changes in nightlights and urban land cover for three sets of aggregate economies:

all countries, African countries, and counties within the United States. We find that

changes in urban land cover have a significant predictive power of GDP growth,

which gets stronger in lower income areas. Overall, while the change in urban land

cover cannot be used as a primary signal, it is an ideal candidate for an auxiliary

third signal.

Third, we apply the urban land cover change to the augmented model and

demonstrate its use to fully identify the model for the estimation of economic

growth. We first show that the urban land cover change satisfies the necessary

properties of a third signal for our applications. We find that the relative weight of

the GDP data in the true income composite (λ∗ in the HSW notation adopted here

too) is 0.60 for the full set of countries. This weight drops to 0.20 for the sub-group

of countries with low-quality official GDP data and increases to 0.88 for countries

with high-quality ones. We also find a weight of 0.54 for African countries and 0.70

for the U.S. counties. Overall, these results suggest that the weight assigned to the

GDP data by this methodology are inversely related to the reliability of the official

GDP data and also depends on the geographic level of analysis.
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We then show its empirical applications to illustrate three advantages of

our approach. First, we show that when feasible, the three-signal model is supe-

rior to simply using the additional signal as a covariate to improve the predicted

GDP growth (as in e.g., Baragwanath et al., 2021; Engstrom et al., 2021; Goldblatt

et al., 2019; Lehnert et al., 2020). We find that the true income-growth estimate

from a fully identified model is invariant to adding a third signal to predict GDP

growth. Second, the fully identified model introduces new ways to improve in-

come estimates. For example, the identified primitives for a set of regions where

an appropriate third signal is available can be used to estimate true income growth

in similar regions where such a signal is unavailable.2 Finally, our approach can

be used to validate the use of nightlights or other types of signals to predict eco-

nomic activities, by providing a useful tool to assess the magnitude and direction

of potential measurement errors. We find that these errors can be quite large, es-

pecially at the extremes of the income distribution and when true income growth

is negative.

We contribute to the literature on methodological improvements to the HSW

framework in using signals to measuring true income growth. A strand of this lit-

erature highlights the non-linear aspects of the relation between nightlights and

underlying economic activity (Bickenbach et al., 2016; Bluhm and McCord, 2022;

Chen and Nordhaus, 2011; Goldblatt et al., 2019; Keola et al., 2015; Maldonado,

2022; Wu et al., 2013). Another focuses on the utility of different sources of night-

light data and other satellite data – especially in conjunction with machine learning

methodologies – to improve measures of growth (Baragwanath et al., 2021; Beyer

et al., 2018; Dai et al., 2017; Engstrom et al., 2021; Gibson and Boe-Gibson, 2021;

Goldblatt et al., 2019; Lehnert et al., 2020; Wang et al., 2019; Zhang and Gibson,

2022). The full identification of the model parameters to solve for the true income

2This requires an assumption (used by HSW, in their calibration exercise, see p. 1009, 1018) that
these two region groupings only differ from one other in their signal-to-noise ratio of the official
GDP data.

4



growth is a novel approach to improve the method.

At the same time, our approach provides a simple tool to aid empirical stud-

ies that uses nightlights to estimate socioeconomic developments. The list of topics

that have been studied empirically based on nightlights data is long and growing.3

Our approach provides a simple methodology to fully implement the HSW model

in a way that minimizes the uncertainty around the optimal estimate of economic

activity produced by the model. This is of paramount importance for all types of

empirical applications.

The rest of the paper is organized as follows. Section 2 begins with the

original two-signal model of HSW, followed by our proposed refinement using a

third signal. In Section 3, we describe the data, show empirical implementations

of our model, and illustrate its value for empirical work. We conclude in Section 4.

2 A Three-Signal Model of Economic Activities

2.1 The Underidentification of the Two-Signal Model

To motivate our model, we briefly recapitulate HSW’s original model that esti-

mates the true, but unobservable, economic growth by exploiting two observable

noisy signals correlated with the true economic activities. Let yj be the true growth

rate in country j. Let gj and lj respectively indicate the two signals used in the

model, which correspond to the growth rates of real GDP and of observed lights in

country j in the empirical exercise. HSW assume that the two signals are linearly

related to true economic activities which, as standard in the signal extraction liter-

3Nightlights have been employed, among others, to validate statistical measures of income,
such as the Penn’s World Tables or household surveys (Pinkovskiy and Sala-i Martin, 2016a,b);
to estimate informal economic activities (Chen and Nordhaus, 2011; Ghosh et al., 2010); to study
the effects of intercity linkages, institutions and ethnic characteristics on regional income in Africa
(Alesina et al., 2016; Michalopoulos and Papaioannou, 2013a,b; Storeygard, 2016); to explore re-
gional political favoritism (Hodler and Raschky, 2014); and to estimate the impact of aid on growth
at sub-national level (Civelli et al., 2018; Dreher and Lohmann, 2015).

5



ature, allows for an error orthogonal to yj that embeds the precision (or tightness)

of the signal around the fundamental, namely:

gj = yj + ε1,j (1)

lj = βlyj + ε2,j (2)

The variance of yj is denoted by σ2
y . Similarly, the variances of the signals

are given by σ2
g and σ2

l . A similar notation is used for the variances of the signal

noises as well: σ2
1 and σ2

2 for ε1,j and ε2,j .

HSW complete the model with a predictive equation that links the two sig-

nals to each other:

gj = ψllj + ej. (3)

The predicted value ĝj = ψ̂llj is linearly combined with the observed signal gj to

improve the accuracy of the estimate of the true economic growth exploiting the

information contained in the signals:

ŷj = λgj + (1− λ)ĝj. (4)

The optimal weight on the official GDP, λ∗HSW , in the linear combination in

equation (4) is chosen to minimize the variance of the forecast error of the predicted

economic growth, i.e., to minimize var(ŷ−y), given the structure of the model and

the assumption that the errors in equations (1)-(2) are mutually orthogonal.

HSW show that λ∗HSW is a function of four unknown parameters, namely

(σ2
y , σ

2
1, σ

2
2, βl). From equation (8) of HSW, the solution is:

λ∗HSW =
1

1 +
(σ2

1

σ2
y

+
σ2
1

σ2
2

β2
l

). (5)
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However, only three moment conditions are available from the observable data.

Two conditions are obtained from the variance of the signals:

σ2
g = σ2

y + σ2
1

σ2
l = β2

l σ
2
y + σ2

2,

while the last one is provided by the covariance between the two signals, σgl:

σgl = βlσ
2
y

To close the model and solve for the true income growth, they make use

of the signal-to-noise ratio associated with signal gj , the officially measured GDP

growth rate. From equation (1), define the signal-to-noise ratio as:

ϕ =
σ2
y

σ2
y + σ2

1

. (6)

HSW split the sample of developing countries into two groups based on the quality

of their national accounting system, and assume they only differ by the signal-to-

noise ratio, ϕ. If ϕ for one group (say, those with high-quality data) is known, they

can use this equation to infer the ϕ for the other, and the optimal λ∗HSW ’s for both

groups. HSW’s preferred estimates of true income growth assume ϕ = 0.9 for the

high-quality data countries and conduct an insightful investigation of the relation

between signal precision and λ∗HSW ; nevertheless, the underlying identification is-

sue remains as any ϕ would in principle be admissible.

2.2 A Third Signal to Solve Them All

We demonstrate below that the introduction of a third signal can overcome the

underidentification of model parameters and do away with the need to assume a

value for ϕ. Let the third signal be uj , corresponding to the growth rate of urban

7



land cover in the empirical exercise in Section 3. We modify the structure of the

model in two ways. First, we add to (1) and (2) an observation equation for the

new signal:

uj = βuyj + ε3,j. (7)

We denote the variance of uj and ε3,j with σ2
u and σ2

3 respectively.

Second, the predictive equation (3) is modified to also include the third sig-

nal:

gj = ψllj + ψuuj + ej, (8)

which is associated to a predicted value of the main signal given by ĝj = ψ̂llj+ψ̂uuj .

As for the two-signal model, the optimal λ∗ of the augmented model is

chosen to minimize the variance of the forecast error of the predicted economic

growth. Using (8) in (4), var(ŷ − y) can be written as

var(ŷ − y) = var
[
λ(gj − yj) + (1− λ)(ĝj − yj)

]
= λ2σ2

1 + (1− λ)2
[
ψ̂2
l σ

2
2 + ψ̂2

uσ
2
3 + (ψ̂lβl + ψ̂uβu − 1)2σ2

y

]
,

where use has been done of the structural equations of the model (1)-(2) and (7)

and of the assumption that their errors are mutually orthogonal. After taking the

derivative of this expression with respect to λ, we obtain:

λ∗ =
ψ̂2
l σ

2
2 + ψ̂2

uσ
2
3 +

(
ψ̂lβl + ψ̂uβu − 1

)2
σ2
y

σ2
1 + ψ̂2

l σ
2
2 + ψ̂2

uσ
2
3 + (ψ̂lβl + ψ̂uβu − 1)2σ2

y

. (9)

It is easy to show that the OLS estimates ψ̂l and ψ̂u return a biased estimate

of the inverse of the two coefficients βl and βu, with a bias structure that depends
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on the underlying parameters of the signaling model.4 Using this fact and after a

few manipulations, λ∗ in (9) can be simply expressed as:

λ∗ =
1

1 +
(σ2

1

σ2
y

+
σ2
1

σ2
2

β2
l +

σ2
1

σ2
3

β2
u

). (10)

Therefore, the optimal λ∗ depends on six unknown parameters (σ2
y, σ

2
1, σ

2
2, σ

2
3, βl, βu).

Six sample moment conditions are necessary to fully identify these six parameters

from the data.

The first three condition are obtained from the variance of the three signals,

which using (1)-(2) and (7) can be expressed as:

σ2
g = σ2

y + σ2
1 (11)

σ2
l = β2

l σ
2
y + σ2

2 (12)

σ2
u = β2

uσ
2
y + σ2

3. (13)

The other three conditions are provided by the covariances between the three sig-

nals. These can be expressed as:

σgl = βlσ
2
y (14)

σgu = βuσ
2
y (15)

σlu = βlβuσ
2
y (16)

4The bias structure is given by:

plim(ψ̂l) =
1

βl

(
β2
l σ

2
yσ

2
3

β2
l σ

2
yσ

2
3 + β2

uσ
2
yσ

2
2 + σ2

2σ
2
3

)
plim(ψ̂u) =

1

βu

(
β2
uσ

2
yσ

2
2

β2
l σ

2
yσ

2
3 + β2

uσ
2
yσ

2
2 + σ2

2σ
2
3

)
.
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Conditions (14)-(16) give the solution for βl, βu, and σ2
y . Given these, (11)-(13) allow

us to solve for σ2
1 , σ2

2 , and σ2
3 . We explicitly derive the model solution in Appendix

A.1.

The third signal provides three new moment conditions — equations (13),

(15), and (16) — with the introduction of two additional parameters (βu and σ2
3).

It therefore overcomes the underidentification issue of the two-signal model. Two

of these moment conditions are equivalent to those related to signal l in HSW,

and they are respectively obtained from the variance of signal u in (13) and the

covariance between this signal and signal g in (15). In addition to these moments,

the covariance between u and l in (16) provides the new information that ensures

the identification of the model.

The covariance structure of the signals must empirically satisfy a set of nec-

essary conditions for the solution to exists. In particular, the covariance between

the second and third signals must be positive and sufficiently strong, i.e.:

σlu > 0 (17)

σ2
g >

σguσgl
σlu

. (18)

We detail these conditions in Appendix A.1.

Note that the primary scope of the three-signal model is to overcome the

identification shortcoming of the two-signal HSW model. The solution to the three-

signal model also allows us to recover the primitive parameters necessary to esti-

mate λ∗HSW for the two-signal model in (5). Hence, we can use equation (6) to infer

true growth for the whole sample, even if the additional signal is only informative

for a subset of the sample for a given period. The ϕ for the sample where the third

signal is informative would be sufficient to also pin down ϕ and λ∗HSW for the rest

of the sample. This largely simplifies the search for an empirically suitable third
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signal for the full sample in all periods.5

Finally, the use of a third signal is suitable as long as two important implicit

conditions are satisfied. First, the new signal must be sufficiently informative. This

means it must be not only correlated with economic activity, but also with the main

signals. Second, the two error terms in equations (2) and (7) are assumed to be un-

correlated. If this condition was not satisfied, then an additional covariance term

would be found in the expression for var(ŷ − y), and another moment condition

would be necessary again. The mutual orthogonality of the errors of the signal

equations is a fairly common assumption in signaling models.

3 Urban Land Cover as a Third Signal

In this section, we turn to the empirical implementation of the three-signal model.

We begin with a summary of the rich datasets used in our analysis. Then, we

examine the properties of the change in urban land cover as a signal to predict

GDP growth and compare it with the use of nightlights variations. Finally, we

implement our augmented model using nightlights and urban cover to estimate

λ∗ in equation (10). We consider a sample at the country level for the whole world,

comparable to the sample used by HSW, and one for African countries. We explore

potential sub-national applications with the U.S. counties.

3.1 Data

3.1.1 Night Lights

Nightlights data are derived from annual composites of nightlights intensity from

the Defense Meteorological Satellite Program (DMSP) satellites. The stable lights

product provides 6-bit digital numbers (DN) ranging from 0 to 63 for each 30 arc-

5See Appendix A.2 for a full derivation of the solution for this split-sample approach.
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second output pixel. During processing, ephemeral lights, such as from fires and

gas flaring, are removed. Processing also excludes (at the pixel level) images for

nights affected by clouds, moonlight, sunlight, and other glare. Lights are aggre-

gated at the geographic level of analysis, after applying a correction for the curva-

ture of the Earth at country level.6

We extend the baseline DMSP data, which are based on observations in-

tended to span the day-night boundary and ends in 2013, with the series produced

by the Earth Observation Group (Ghosh et al., 2009) for the period 2014-2020 by

using pre-dawn nightlights data from F15 and F16 DMSP satellites.7 Nightlights

as observed in the early hours of the morning are likely to stem from largely public

infrastructure only, and while certain studies have treated this as separate from the

earlier DSMP time-series (for example Gibson and Boe-Gibson, 2021), for our pur-

poses, we use the two time series together. This is because given our methodology

revolves around “long-differencing” between two distant points in time, the usage

of the extended data would provide a lower bound regarding estimate of elasticity

of nightlights. Nevertheless, the estimates of the elasticity we obtain are consistent

with those in HSW (see Table 1).

3.1.2 Urban Land Cover

Our measure of urban land cover is obtained from the European Space Agency

(ESA) Climate Change Initiative (CCI). Their land cover raster product documents

consistent global land cover coverage at 300 meters spatial resolution on an annual

basis from 1992 to 2020, describing the land surface in the 22 classes defined by the

6Because of the curvature of the Earth, grid cell size varies in proportion to the cosine of latitude.
We follow HSW’s procedure by calculating a weighted average (based on country’s land area) of
lights across pixels within a country.

7While all DMSP satellites are sun-synchronous polar-orbiting platforms, the timing of DMSP
logged observations (overpass) varies. This is because the DMSP satellites have unstable orbits.
Thus, while originally the timing of observations was in the early evening (for example, the F18
satellite coverage was at circa 8:30 pm in 2013), the decayed orbit means that the DSMP satellites
shifted to earlier overpass times later on.
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United Nations Land Cover Classification System (LCCS). We extract the share of

urban land cover from the original compound land cover raster data. Similar to

nightlights, for the national level analysis, we adjust for the curvature of Earth for

this data as well.8

3.1.3 GDP

For our national level analysis, official country GDP data at national level are de-

rived from the 2021 World Development Indicators (WDI) dataset of the World

Bank. We use constant 2015 US dollar denominated GDP figures. Our US-county

data come from the official county-level economic output data of the Bureau of

Economic Statistics, U.S. Department of Commerce, and recorded in 2012 U.S. dol-

lars. We restrict our analysis to mainland U.S., excluding Hawaii and Alaska.

3.1.4 Statistical Capacity Score

Similar to HSW, we demarcate the countries used in our analysis based on the ro-

bustness of their respective statistical capacities. We use the World Bank’s Statisti-

cal Capacity Indicators from 2010. It is a composite score that assesses the capacity

of a country’s statistical system. It is based on a diagnostic framework assessing

the following areas: methodology; data sources; and periodicity and timeliness.

Countries are scored against 25 criteria in these areas, using publicly available in-

formation and/or country input. The overall score is a simple average of all three

8In our empirical application, the orthogonality of the errors in equations (2) and (7) reasonably
rests on the differences in satellites and technologies from which land cover and nightlights data
are obtained. Land cover data primarily come from the elaboration of moderate spatial resolution
images produced by the Medium Resolution Imaging Spectrometer (MERIS) as part of the ESA
Environmental Satellite Program (Envisat), integrated with complementary sources such as the
SPOT (Satellite Pour l’Observation de la Terre)-VEGETATION Programme (Defourny et al., 2017).
On the contrary, NOAA elaborates data collected by the Operational Linescan System (OLS) multi-
spectral radiometer on the DMSP satellites, which belong to a program with meteorological and
military purposes of the U.S. Space Force (see Elvidge et al., 2004; Henderson et al., 2012, for more
information).
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area scores on a scale of 0-100. We use a cutoff of 50 to distinguish between coun-

tries with high and low statistical capacity.

3.2 GDP Growth Predictive Regressions

We first estimate the real GDP growth, g, predictive regression model (8) in which

the growth of nightlights luminosity, l, and urban land cove, u, are used as pre-

dictors over long time spans. The growth rates are constructed as log-differences,

taking the means of the first and last two years of the period as initial and final

observations respectively. Table 1 reports the estimates of the model for the three

samples. The predictive regressions are estimated over long time periods of 20-

25 years to capture the long-term correlations between economic growth and the

signals.

Our methodology is mostly agnostic regarding the predictive stage of the

HSW model. It simply requires that an additional informative signal with the

aforementioned statistical characteristics regardless of the relative magnitude of

its coefficient in model (8). However, it is worth noting that at the country level,

especially in the sample with more developing nations, the urban growth coeffi-

cient is larger than at the sub-national level. In Africa, the coefficient of the urban

land cover growth is more strongly significant than that of the nightlights growth.

The model fit, captured by the adjusted R2, does not necessarily increase with the

additional signal.

3.3 Estimating the GDP Growth Weight, λ∗

We turn now to the optimal weight for the official GDP growth, λ∗, in equation (10)

for our three samples. Table 2 summarizes the overall results. Appendix Table B.1

reports the full set of estimated parameters and covariance matrices.
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3.3.1 All Countries

Our first sample parallels the HSW’s exercise. We extend their sample with seven-

teen countries not included in HSW, but we lose nine due to data limitations.9 We

also extend the time period by about ten years.

We first note that the correlation between l and u is smaller than both the

correlations between l and g and between u and g. Nevertheless, it is positive and

still relatively sizable, as expected from conditions (17) and (18).10

We then estimate a λ∗ = .6 for the entire group of countries. The correspond-

ing signal-to-noise ratio of the GDP signal ϕ in (6) is .78. This sample includes a

large variety of countries, and we can think of this λ as a broadly defined reference

value at national level that would work in general for countries with “average”

GDP data quality. As done by HSW, we also split the sample of countries into two

sets based on the World Bank classification of the capacity of their national sta-

tistical agencies. For the countries with low-quality statistical capacity we obtain

λ∗ = .20 and ϕ = .38, whereas the high-quality ones have λ∗ = .88 and ϕ = .94.11

Our estimates validate the calibration exercise of HSW by showing that the

optimal GDP weight λ∗ is an increasing function of the GDP data quality and that

the luminosity and urban land cover are useful signals to recover the true economic

activity when the GDP data is unreliable. However, the major difference — and the

contribution — of our approach is that the augmented models for the two groups

are independently identified. Our approach does not require an initial guess to cal-

ibrate the signal-to-noise ratio of the GDP growth signal for either group. Instead,

it allows the data to produce a high λ for the countries with high-quality statisti-

cal capacity, implying that their GDP data already provide an excellent proxy for
9Appendix Table B.2 lists the included countries and their GDP data quality.

10More precisely, the conditions are based on a comparison of variances and covariances of the
signals. We prefer to rely on correlations in the discussion here because they provide the intuition
and are easier to interpret.

11As in HSW, this exercise assumes that the two groups have different signal-to-noise ratios for
the GDP growth signal, while the relation between the other two signals and GDP is taken as
common across groups.
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economic activity.

3.3.2 African Countries

This sample includes developing countries in the lower-mid range of GDP data re-

liability.12 As for the full world sample, the correlation between l and u is positive,

but smaller than the l-g and u-g correlations. This is consistent with the conditions

for the existence of a solution. The optimal estimated weight is λ∗ = .54, with a cor-

responding signal-to-noise ratio of the GDP growth signal of ϕ = .65. This result

corroborates the intuition of the previous case by showing that the key determi-

nant of λ is the quality of the national accounting system rather than the degree of

development of the countries.

3.3.3 U.S. Counties

Our third exercise explores a sub-national case for an advanced economy using

U.S. counties. The U.S. national statistical capacity is classified at the highest level

of quality, hence we would expect its county-level GDP data to be of a similarly

high quality and λ∗ to be quite large. Instead, we find λ∗ = .7 – lower than the .88

value for the countries with high-quality statistical capacity and more in line with

the average weight of .6.13

This result illustrates how, at the sub-national level, the luminosity and ur-

ban land-cover signals may still be relevant even in advanced, high data quality

countries. Measuring disaggregated GDP at local level with good precision is more

difficult than measuring the overall national GDP. Idiosyncratic components make

regional economic activity less homogeneous and more difficult to interpret by

a central statistical agency. Moreover, a high-quality national statistical agency

12Appendix Table B.3 lists included African countries.
13We also note that the contribution of u to the GDP growth prediction is smaller compared to

the other two cases. Nevertheless, the correlation with the l signal remains sufficiently strong to
allow u to provide a useful signal for the augmented model.
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might have to rely on the support of local government agencies, which might not

be as well-funded as the national one.

3.4 Discussion: Empirical Implications of the Augmented Model

The main advantage of our approach is it does away with the need for an outside

parameter choice to estimate true income growth. We now show its value for em-

pirical work. First, we show that the gains in accuracy when using the HSW model

to predict economic activity primarily comes from remedying its lack of identifica-

tion, rather than from refinements to the GDP growth prediction. In other words,

the real gains are obtained by the optimal identification of λ∗. Second, we show

that, when it is feasible to estimate the three-signal model, such estimates can be

used to validate and assess the magnitude and direction of potential measurement

errors of empirical applications of signal-based estimation of economic activities.

3.4.1 Model Accuracy

We first compare the predicted GDP growth from equation (8), ĝi, with the esti-

mated true economic activity growth, ŷi in (4). Both estimates use the three-signal

model specification. We calculate the root mean squared error (RMSE) of using ĝi

instead of ŷi to predict growth in the full sample of countries. We find an RMSE of

21% — a large error that is a quarter of the average estimated ŷi = 84% over the 24

years of our sample.

Next, we show that adding the urban signal in the predictive stage leads to

a negligible gain in accuracy. After estimating the parameters from the fully iden-

tified model, we estimate ŷi using the three-signal predicted GDP (equation 8) and

the two-signal predicted GDP (equation 3). The scatter plot in Figure 1 compares

the two series for all countries. The two estimates are very similar. They positively

comove and a formal t-test does not reject the hypothesis that the difference be-

tween the two is zero (with p-value = 1). This indicates that the gain in accuracy
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from adding an extra signal in the predictive stage is marginal compared to that

from properly identifying λ∗.

Finally, we show that achieving full identification is paramount for the ac-

curacy of the economic growth estimates by estimating ŷi for the countries with

low-quality statistical capacity using the overall λ∗ = .60 instead of the group-

specific parameter .20. We find that this alternative growth prediction would incur

an RMSE of 14%, which corresponds to about one sixth of the average growth of

82% estimated for this sample of countries with the correct weights.

Notably, as an additional benefit, combining our approach with the HSW’s

split-sample strategy can provide a convenient way to estimate economic activity

for a set of countries with a fully identified model even if a third signal is not

directly available. Under the assumption that two set of countries differ only in

terms of their signal-to-noise ratios of the GDP growth signal, the availability of a

third signal for one group of countries is sufficient to also identify σy and λ∗HSW (the

optimal weight for the two-signal model) for the other group. This λ∗HSW would

allow us to construct an estimate of economic activity growth only relying on the

nightlights signal which, as demonstrated above, is fairly close to that obtained

from the augmented model.

3.4.2 Model Validation and Measurement Errors

A common empirical application of the HSW framework is to use the predictive

stage to estimate GDP growth from nightlights changes. The baseline ψ̂l = .3 found

by HSW is sometimes used; alternatively, when official income data are available

for a subset of countries or regions, the predictive model is fitted and the estimated

ψ̂l applied to the remaining part of the sample (see e.g., Civelli et al., 2018).

We can use true income growth estimates from the augmented model to

assess this practice by comparing the predicted GDP growth, ĝ, to the true income

growth, ŷ. First, we randomly select two thirds of a sample as a training sample
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to estimate ψ̂l. We then use it to predict the GDP growth for the remaining third

of “out-of-sample” observations. We repeat these steps for one hundred times and

take the average predicted GDP growth for each geographic unit. As a proof of

concept, we work with the full African countries sample and the counties in Texas.

Figure 2 present these comparisons with African countries in Panel (a), grouped by

quality of the official GDP data, and Texan counties in Panel (b), with a separate

color for those in the Rio Grande Valley (along the southern border with Mexico).

The results for the African countries show that the predicted GDP growth

generally underestimates the true income growth, with the exception of five lower-

quality and one mid-quality countries. The estimation error is also substantial,

with an RMSE about half of the average true income growth. In some cases, re-

lying on the predicted GDP growth can lead to very large errors of up to 5-6%

in annualized terms in either direction, not only for the lower-quality countries

(Guinea, Zimbabwe, Central African Republic) but also the higher-quality ones

(Ethiopia, Uganda, Nigeria, Malawi).

The results for the Texan counties depict an even richer analysis at sub-

national level. Estimation errors get larger, with an RMSE about 1.25 times the av-

erage true income growth. But the most interesting result is that the predicted GDP

growth tends to overestimate the true income growth when true income growth is

small or negative. This type of situation would have significant implications for an

empirical application. For instance, suppose we used nightlights growth to predict

GDP growth for the Rio Grande Valley counties — a region with a high share of

migrant workers and many slow-growth counties, especially in its southern seg-

ment.14 We would overestimate growth by roughly 2-3% in annualized terms for

most of the counties, while at the same time underestimate it by roughly 5% for

four highly performing counties. More importantly, we would estimate a positive

GDP growth rate, around 2.5-3.5%, for four counties with true income growth as

14There are 248 counties in Texas, 25 of which are in the Rio Grande Valley (see Figure B.1).
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negative as −5%.

4 Concluding Remarks

From policy evaluation to international comparisons, the availability of reliable

measures of income is of paramount importance for empirical work. We want to

be able to accurately infer true income growth. The augmented three-signal model

we propose enhances the HSW methodology by solving the identification issue

of their original approach. This improvement has relevant implications for the

estimation of true income growth.

The real gain in accuracy comes from the identification stage of the model,

rather than a more refined GDP growth predictive equation. When an official mea-

sure of GDP is available, especially when we have little confidence about the qual-

ity of the data, using the fully identified model to estimate true income growth is

crucial. The optimal λ varies across samples and geographic level of analysis, and

the augmented model can help to correctly choose the optimal λ to use to form the

estimates.

However, the augmented model is also useful when an official measure of

income is only partially available. The augmented model can be leveraged to en-

hance existing estimation procedures and to validate the estimates produced by

other approaches, assessing the sign and magnitude of their potential measure-

ment errors. The flexibility of the augmented model would accommodate other

types of third signals instead of urban land cover, such as electrical power usage

or cellular phone data. In principle, the model could also be applied to any other

three-signal combinations that do not necessarily include official income statistics.
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Tables and Figures

Table 1: GDP Growth (g) Predictive Regressions

World Africa U.S. Counties
(1) (2) (3)

l 0.389 0.201 0.575
(0.062) (0.105) (0.037)

u 0.227 0.320 0.068
(0.080) (0.147) (0.013)

N 178 45 2999
adj.R2 0.439 0.206 0.357
adj.R2 −HSW 0.395 0.155 0.355
Period 1995− 2019 2001− 2019 2002− 2020

Note: Growth rates are calculated as log-differences over the sample. The
adj.R2 − HSW is the adjusted R2 of the HSW two-signal version of the
model. Robust standard errors in parentheses.
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Table 2: Signal Correlations and Model Parameters

corr(g, l) corr(g, u) corr(l, u) ϕ λ∗

All Countries 0.63 0.42 0.34 0.78 0.60
– High-quality stat. capacity 0.94 0.88
– Low-quality stat. capacity 0.38 0.20

African Countries 0.42 0.35 0.22 0.65 0.54

U.S. Counties 0.59 0.16 0.12 0.81 0.70

Note: Signal correlation structure and estimates of λ∗ (the optimal GDP growth weight in 10) and
ϕ (the signal-to-noise ratio of the GDP growth signal defined in 6) in the augmented model for the
three samples of analysis. A common correlation structure is maintained across the two sub-sets
of high- and low-quality statistical capacity countries.
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Note: Comparison of the estimated true economic activity growth ŷi obtained form (4) for the aug-
mented model (with l and u signals) with that obtained from the HSW two-signal version of the
model (with l only), after attaining full identification from the three-signal model and using the
subset (σ2

y, σ
2
1 , σ

2
2 , βl) of those parameters to identify the two-signal model. The solid line is the

45-degree line.

Figure 1: True Growth Estimates: Two- v. Three-Signal Model
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(a) African Countries (b) Texas Counties

Note: Two thirds of observations are selected as a training sample to estimate ψ̂l. The coefficient
is then used to predict GDP growth for the remaining “out-of-sample” observations. Average pre-
dicted GDP growth is reported out of one hundred repetitions. The solid line is the 45-degree line.

Figure 2: Light-based Predicted GDP Growth v. Three-Signal Estimated True In-
come Growth
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Online Appendix

A Theoretical Methods

We provide in this appendix some more details about the results discussed in Sec-

tion 2 of the main paper.

A.1 Solution of the Augmented Model and Empirical Require-
ments

In this section, we derive the solution of the augmented model and illustrate the

set of technical conditions that must be empirically satisfied by the signals used in

the model to obtain a solution for the parameters of the model.

The Solution: The identifying moment conditions derived in the paper (equa-

tions 11-16) are:

σ2
g = σ2

y + σ2
1 (A.1)

σ2
l = β2

l σ
2
y + σ2

2 (A.2)

σ2
u = β2

uσ
2
y + σ2

3 (A.3)

σgl = βlσ
2
y (A.4)

σgu = βuσ
2
y (A.5)

σlu = βlβuσ
2
y. (A.6)
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From the last three moment conditions (A.4)-(A.6), we can obtain the solution for

βl, βu, and σ2
y :

σ2
y =

σguσgl
σlu

(A.7)

βl =
σlu
σgu

(A.8)

βu =
σlu
σgl

. (A.9)

Using these solutions into (A.1)-(A.3), we find the solution for the remaining three

parameters:

σ2
1 = σ2

g −
σguσgl
σlu

(A.10)

σ2
2 = σ2

l − σ2
gl (A.11)

σ2
3 = σ2

u − σ2
gu. (A.12)

Technical Requirements: There are four empirical requirements for a solution to

exist. First, a third signal must be positively correlated with the second one. The

relation between signals and true economic activity can be normalized, without

loss of generality, to be positive, that is βl, βu > 0. This implies that σgl and σgu

must be positive in (A.4)-(A.5). Therefore, given the solution for σ2
y , also

σlu > 0. (A.13)

The other three requirements come from (A.10)-(A.12):

σ2
g >

σguσgl
σlu

(A.14)

σ2
l > σ2

gl (A.15)

σ2
u > σ2

gu. (A.16)

These three conditions simply require that the three signals exhibit sufficiently

high variance relative to the observed signal covariance structure. While we find
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that conditions (A.15) and (A.16) are generally easily satisfied by the data, con-

dition (A.14) more closely depends on the covariance between second and third

signals. The higher σlu, the easier the requirement is satisfied. Hence, a positive

and sufficiently strong covariance between second and third signals is the key con-

dition to empirically select the third signal.

A.2 Solution for the Split-Sample Model

We turn next to the solution for the split-sample approach discussed in Section 2

— especially in footnote 5 — and used in Section 3.3 for the heterogeneity analysis

by data quality.

Let us suppose that a sample of countries can be split into two group, A

and B, based on some characteristics which provides some useful information for

identification. In their split-sample exercise, HSW assume that the two groups

share the same model equations, except for equation (1) in which the variance of

the g signal is allowed to be group specific. The identifying condition (A.1) can be

restated as

σ2
g,A = σ2

y + σ2
1,A (A.17)

σ2
g,B = σ2

y + σ2
1,B. (A.18)

This assumption also implies that equation (6), the signal to noise ratio of the g

signal (i.e., GDP growth in all these applications), must differ by group:

ϕA =
σ2
y

σ2
y + σ2

1,A

(A.19)

ϕB =
σ2
y

σ2
y + σ2

1,B

. (A.20)

By calibrating ϕA, an additional condition is provided to solve the HSW’s

model for group A. In particular σ2
y and σ2

1,A are obtained. Given σ2
y , (A.18) pins

down σ2
1,B and, as a consequence, ϕB as well. This is sufficient to also find a solu-
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tion of the two-signal HSW model for group B. The same approach would apply

to the augmented three-signal model, but it is not necessary to find a solution in

this case, as the augmented model would already be fully identified for each group

separately.

Exploiting this approach, however, the augmented model allows for a fur-

ther result as we discuss in the main text of the paper. Suppose a third signal u is

available for group A, but not group B. The augmented model allows us to solve

for all the model parameters for group A, especially σ2
y . Under the assumption of

the split-sample approach that σ2
y is common across groups, the two-signal model

with only signals g and l for group B can be completely identified since only three

parameters are left now (σ2
1, σ

2
2, βl) with three moment conditions. Moreover, in

this case, the remaining parameters could be taken as common across the entire

sample (estimating the two-signal model with data from groups A andB) or could

even be assumed to be group-specific for group A if preferred.
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B Additional Tables and Figures

Table B.1: Model Parameters and the Signal Covariance Structure

Panel A: Parameter Estimations
Model βl βu σ1 σ2 σ3 σy

All Countries 1.16 0.54 0.04 0.19 0.15 0.15
– High-quality statistics 1.16 0.54 0.25 0.19 0.15 0.15
– Low-quality statistics 1.16 0.54 0.01 0.19 0.15 0.15

African Countries 1.14 0.44 0.03 0.21 0.05 0.06
U.S. Counties 0.74 0.28 0.02 0.07 0.23 0.10

Panel B: Signal Covariance Structure
Model σ2

g σ2
l σ2

u σgl σgu σlu

All Countries 0.19 0.39 0.19 0.17 0.08 0.09
– High-quality statistics 0.16
– Low-quality statistics 0.39

African Countries 0.09 0.29 0.06 0.07 0.03 0.03
U.S. Counties 0.12 0.13 0.24 0.07 0.03 0.02

Note: Panel A reports the estimates of the six parameters of the augmented model.
Panel B reports the covariance structures of the signals for the three cases ana-
lyzed: all countries, African countries, and U.S. counties. High-quality and Low-
quality respectively indicate the set of countries with high- and Low-quality GDP
data in the world countries sample. A common covariance structure is main-
tained across these two sub-sets, with the exception of σ2

g .
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Table B.2: Statistical Capacity of All Countries

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Aruba ABW 0 1
Angola AGO 46 1
Albania ALB 70 1
Andorra AND 100 1
United Arab Emirates ARE 100 1
Argentina ARG 87 1
Armenia ARM 92 1
Antigua and Barbuda ATG 42 1
Australia AUS 100 1
Austria AUT 100 1
Azerbaijan AZE 79 1
Burundi BDI 54 1
Belgium BEL 100 1
Benin BEN 56 1
Burkina Faso BFA 62 1
Bangladesh BGD 69 1
Bulgaria BGR 91 1
Bahrain BHR 100 1
Bahamas BHS 100 1
Bosnia and Herzegovina BIH 62 1
Belarus BLR 86 1
Belize BLZ 61 1
Bermuda BMU 100 1
Bolivia BOL 67 1
Brazil BRA 83 1
Barbados BRB 0 1
Brunei BRN 100 1
Bhutan BTN 76 1
Botswana BWA 60 1
Central African Republic CAF 56 1
Switzerland CHE 100 1
Chile CHL 94 1
China CHN 66 1
Côte d’Ivoire CIV 59 1
Cameroon CMR 67 1
Democratic Republic of the Congo COD 36 1
Republic of Congo COG 54 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Colombia COL 84 1
Comoros COM 50 1
Cape Verde CPV 73 1
Costa Rica CRI 77 1
Cuba CUB 99 1
Cyprus CYP 100 1
Czech Republic CZE 99 1
Germany DEU 100 1
Dominica DMA 47 1
Denmark DNK 100 1
Dominican Republic DOM 68 1
Algeria DZA 59 1
Ecuador ECU 82 1
Egypt EGY 86 1
Spain ESP 100 1
Estonia EST 99 1
Ethiopia ETH 80 1
Finland FIN 100 1
Fiji FJI 53 1
France FRA 100 1
Micronesia FSM 28 1
Gabon GAB 40 1
United Kingdom GBR 100 1
Georgia GEO 96 1
Ghana GHA 66 1
Guinea GIN 58 1
Gambia GMB 68 1
Guinea-Bissau GNB 46 1
Equatorial Guinea GNQ 32 1
Greece GRC 100 1
Grenada GRD 43 1
Guatemala GTM 86 1
Guyana GUY 53 1
Hong Kong HKG 100 1
Honduras HND 76 1
Croatia HRV 84 1
Haiti HTI 42 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Hungary HUN 87 1
Indonesia IDN 87 1
Isle of Man IMN 100 1
India IND 81 1
Ireland IRL 100 1
Iran IRN 71 1
Iraq IRQ 41 1
Israel ISR 100 1
Italy ITA 100 1
Jamaica JAM 74 1
Jordan JOR 77 1
Japan JPN 100 1
Kazakhstan KAZ 96 1
Kenya KEN 62 1
Kyrgyzstan KGZ 89 1
Cambodia KHM 73 1
Kiribati KIR 37 1
Saint Kitts and Nevis KNA 61 1
South Korea KOR 100 1
Kuwait KWT 100 1
Laos LAO 70 1
Lebanon LBN 57 1
Saint Lucia LCA 60 1
Sri Lanka LKA 77 1
Lesotho LSO 66 1
Lithuania LTU 99 1
Luxembourg LUX 100 1
Latvia LVA 99 1
Macao MAC 0 1
Morocco MAR 78 1
Moldova MDA 84 1
Madagascar MDG 68 1
Maldives MDV 66 1
Mexico MEX 86 1
Marshall Islands MHL 41 1
Macedonia MKD 79 1
Mali MLI 63 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

Malta MLT 100 1
Myanmar MMR 52 1
Mongolia MNG 74 1
Mozambique MOZ 72 1
Mauritania MRT 62 1
Mauritius MUS 70 1
Malawi MWI 79 1
Malaysia MYS 80 1
Namibia NAM 52 1
Niger NER 68 1
Nigeria NGA 69 1
Nicaragua NIC 76 1
Netherlands NLD 100 1
Norway NOR 100 1
Nepal NPL 64 1
New Zealand NZL 100 1
Oman OMN 0 1
Pakistan PAK 77 1
Panama PAN 79 1
Peru PER 81 1
Philippines PHL 89 1
Papua New Guinea PNG 41 1
Poland POL 86 1
Puerto Rico PRI 100 1
Portugal PRT 100 1
Paraguay PRY 70 1
Palestina PSE 42 1
French Polynesia PYF 0 1
Romania ROU 96 1
Russia RUS 88 1
Rwanda RWA 68 1
Saudi Arabia SAU 100 1
Sudan SDN 44 1
Senegal SEN 73 1
Singapore SGP 100 1
Solomon Islands SLB 40 1
Sierra Leone SLE 52 1
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Statistical Capacity of All Countries (continued)

Country Code
Statistical
Capacity

Score

Low-
quality

High-
quality

El Salvador SLV 91 1
Serbia SRB 76 1
Suriname SUR 71 1
Slovakia SVK 83 1
Slovenia SVN 99 1
Sweden SWE 100 1
Swaziland SWZ 68 1
Seychelles SYC 59 1
Chad TCD 57 1
Togo TGO 51 1
Thailand THA 80 1
Tajikistan TJK 74 1
Turkmenistan TKM 39 1
Tonga TON 59 1
Trinidad and Tobago TTO 71 1
Tunisia TUN 79 1
Turkey TUR 84 1
Tanzania TZA 68 1
Uganda UGA 70 1
Ukraine UKR 88 1
Uruguay URY 96 1
United States USA 100 1
Uzbekistan UZB 61 1
Saint Vincent and the Grenadines VCT 54 1
Vietnam VNM 64 1
Vanuatu VUT 42 1
Yemen YEM 49 1
South Africa ZAF 82 1
Zambia ZMB 58 1
Zimbabwe ZWE 51 1

Note: List of countries in the world sample. The statistical capacity score is provided by the World Bank
for developing countries. We assign a score of 100 by default to developed countries. A cutoff of 50 is used
to classify countries as low/high quality.
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Table B.3: Statistical Capacity of Included African Countries

Country Code
Statistical
Capacity

Score

Low
Quality

Medium
Quality

High
Quality

Angola AGO 46 1
Burundi BDI 54 1
Benin BEN 56 1
Burkina Faso BFA 62 1
Botswana BWA 60 1
Central African Republic CAF 56 1
Côte d’Ivoire CIV 59 1
Cameroon CMR 67 1
Democratic Rep. of Congo COD 36 1
Republic of Congo COG 54 1
Algeria DZA 59 1
Egypt EGY 86 1
Ethiopia ETH 80 1
Gabon GAB 40 1
Ghana GHA 66 1
Guinea GIN 58 1
Gambia GMB 68 1
Guinea-Bissau GNB 46 1
Equatorial Guinea GNQ 32 1
Kenya KEN 62 1
Liberia LBR 33 1
Libya LBY 41 1
Lesotho LSO 66 1
Morocco MAR 78 1
Madagascar MDG 68 1
Mali MLI 63 1
Mozambique MOZ 72 1
Mauritania MRT 62 1
Malawi MWI 79 1
Namibia NAM 52 1
Niger NER 68 1
Nigeria NGA 69 1
Rwanda RWA 68 1
Sudan SDN 44 1
Senegal SEN 73 1
Sierra Leone SLE 52 1
Swaziland SWZ 68 1
Chad TCD 57 1
Togo TGO 51 1
Tunisia TUN 79 1
Tanzania TZA 68 1
Uganda UGA 70 1
South Africa ZAF 82 1
Zambia ZMB 58 1
Zimbabwe ZWE 51 1

Note: List of countries in the African sample. The statistical capacity score is provided by the World Bank for
developing countries. The quality groups are defined by the terciles of the score distribution.
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Figure B.1: Included Counties in the Rio Grande Valley sample: Cameron, Willacy,
Hidalgo, Starr, Zapata, Jim Hogg, Webb, La Salle, Dimmit, Zavala, Maverick,
Uvalde, Kimey, Real, Edwards, Val Verde, Terrell, Pecos, Reeves, Brewster, Pre-
sidio, Jeff Davis, Culberson, Hudspeth, El Paso
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